Wednesday, March 18, 2020



- Airframe -

The mechanical structure of an aircraft is known as the . This structure is typically considered to include the fuselage, undercarriage, empennage and wings, and exclude the propulsion system.

Airframe designaerodynamics, materials technology and manufacturing methods with a focus on weight, strength and aerodynamic drag, as well as reliability and cost.

- History - 

Modern airframe history began in the United States when a 1903 wood biplane made by .

In 1912 the Deperdussin Monocoque pioneered the light, strong and streamlined monocoque fuselage formed of thin plywood layers over a circular frame, achieving 210 km/h (130 mph).

Four types of airframe construction: (1) Truss with canvas, (2) Truss with corrugate plate, (3) Monocoque construction, (4) Semi-monocoque construction.

- First World War - 

Many early developments were spurred by military needs during World War I. Well known aircraft from that era include the Dutch designer Anthony Fokker's combat aircraft for the German Empire's Luftstreitkräfte, and U.S. Curtiss flying boats and the German/Austrian Taube monoplanes. These used hybrid wood and metal structures.

By the 1915/16 timeframe, the German Luft-Fahrzeug-Gesellschaft firm had devised a fully monocoque all-wood structure with only a skeletal internal frame, using strips of plywood laboriously "wrapped" in a diagonal fashion in up to four layers, around concrete male molds in "left" and "right" halves, known as Wickelrumpf (wrapped-body) construction - this first appeared on the 1916 LFG Roland C.II, and would later be licensed to Pfalz Flugzeugwerke for its D-series biplane fighters.

In 1916 the German Albatros D.III biplane fighters featured semi-monocoque fuselages with load-bearing plywood skin panels glued to longitudinal ; stressed skin structural configuration as metal replaced wood.Similar methods to the Albatros firm's concept were used by both Hannoversche Waggonfabrik for their light two-seat .II through CL.V designs, and by Siemens-Schuckert for their later Siemens-Schuckert D.III and higher-performance biplane fighter designs. The Albatros D.III construction was of much less complexity than the patented LFG Wickelrumpf.[original research?]

German engineer Hugo Junkers first flew all-metal airframes in 1915 with the all-metal, cantilever-wing, stressed-skin monoplane Junkers J 1 made of steel.It developed further with lighter weight duralumin, invented by Alfred Wilm in Germany before the war; in the airframe of the Junkers D.I of 1918, whose techniques were adopted almost unchanged after the war by both American engineer William Bushnell Stout and Soviet aerospace engineer Andrei Tupolev, proving to be useful for aircraft up to 60 meters in wingspan by the 1930s.

- Between World Wars - 

The J 1 of 1915, and the D.I fighter of 1918, were followed in 1919 by the first all-metal transport aircraft, the Junkers F.13 made of Duralumin as the D.I had been; 300 were built, along with the first four-engine, all-metal passenger aircraft, the sole Zeppelin-Staaken E-4/20.Commercial aircraft development during the 1920s and 1930s focused on monoplane designs using . Some were produced as single copies or in small quantity such as the Spirit of St. Louis. William Stout designed the all-metal Ford Trimotors in 1926.

The Hall XFH naval fighter prototype flown in 1929 was the first aircraft with a riveted metal fuselage : an aluminum skin over steel tubing, Hall also pioneered flush rivets and butt joints between skin panels in the Hall PHflying boat also flying in 1929.Based on the Italian Savoia-Marchetti S.56, 1931 Budd BB-1 Pioneer experimental flying boat was constructed of corrosion-resistant stainless steel assembled with newly developed spot welding by U.S. railcar maker Budd Company.

The original Junkers corrugated duralumin-covered airframe philosophy culminated in the 1932-origin Junkers Ju 52 trimotor airliner, used throughout World War II by the Nazi German Luftwaffe for transport and paratroop needs. Andrei Tupolev's designs in Joseph Stalin's Soviet Union designed a series of all-metal aircraft of steadily increasing size culminating in the largest aircraft of its era, the eight-engined Tupolev ANT-20 in 1934, and Donald Douglas' firm's developed the iconic Douglas DC-3 twin-engined airliner in 1936.They were among the most successful designs to emerge from the era through the use of all-metal airframes.

In 1937, the Lockheed XC-35 was the first aircraft specifically constructed with cabin pressurization to underwent extensive high-altitude flight tests, paving the way for the first pressurised transport aircraft, the.

- Second World War - 

During World War II, military needs again dominated airframe designs. Among the best known were the US C-47 Skytrain, B-17 Flying Fortress, B-25 Mitchell and P-38 Lightning, and British Vickers Wellington that used a geodesic construction method, and Avro Lancaster, all revamps of original designs from the 1930s. The first jets were produced during the war but not made in large quantity.

Due to wartime scarcity of aluminum, the de Havilland Mosquito fighter-bomber was built from wood—plywood facings bonded to a balsawood core and formed using molds to produce monocoque structures, leading to the development of metal-to-metal bonding used later for the de Havilland Comet.

- Postwar - 

Postwar commercial airframe design focused on airliners, on turboprop engines, and then on Jet engines : turbojets and later turbofans. The generally higher speeds and tensile stresses of turboprops and jets were major challenges.Newly developed aluminumalloys with copper, magnesium and zinc were critical to these designs.

Flown in 1952 and designed to cruise at Mach 2 where skin friction required its heat resistance, the Douglas X-3 Stiletto was the first titanium aircraft but it was underpowered and barely supersonic; the Mach 3.2 Lockheed A-12 and SR-71 were also mainly titanium, as was the cancelled Boeing 2707 Mach 2.7 supersonic transport.

Because heat-resistant titanium is hard to weld and difficult to work with, welded nickel steel was used for the Mach 2.8 Mikoyan-Gurevich MiG-25 fighter, first flown in 1964; and the Mach 3.1 North American XB-70 Valkyrie used brazed stainless steelhoneycomb panels and titanium but was cancelled by the time it flew in 1964.

Computer-aided design system was developed in 1969 for the McDonnell Douglas F-15 Eagle, which first flew in 1974 along the Grumman F-14 Tomcat and both used Boron fiber composites in the tails; less expensive carbon fiber reinforced polymer were used for wing skins on the McDonnell Douglas AV-8B Harrier II, F/A-18 Hornet and Northrop Grumman B-2 Spirit.

- Modern Era - 

Airbus and Boeing are the dominant assemblers of large jet airliners while ATR, Bombardier and Embraer lead the regional airliner market; many manufacturers produce airframe components.[relevant? - discuss]

The vertical stabilizer of the Airbus A310-300, first flown in 1985, was the first carbon-fiber primary structure used in a commercial aircraft; composites are increasingly used since in Airbus airliners: the horizontal stabilizer of the A320 in 1987 and A330/340 in 1994, and the center wing-box and aft fuselage of the A380 2005.

The Cirrus SR20, type certificated in 1998, was the first widely produced general aviation aircraft manufactured with all-composite construction, followed by several other.

The Boeing 787, first flown in 2009, was the first commercial aircraft with 50% of its structure weight made of carbon-fiber composites, along 20% Aluminum and 15% titanium: the material allows for a lower-drag, higher wing aspect ratio and higher cabin pressurization; the competing Airbus A350, flown in 2013, is 53% carbon-fiber by structure weight.It has a one-piece carbon fiber fuselage, said to replace "1,200 sheets of aluminum and 40,000 rivets."

2013 Bombardier CSeries have a dry-fiber resin transfer infusion wing with a lightweight aluminium-lithium alloy fuselage for damage resistance and repairability, a combination which could be used for future .In 2016, the Cirrus Vision SF50 became the first certified light jet made entirely from carbon-fiber composites.

- Safety - 

Airframe production has become an exacting process. Manufacturers operate under strict quality control and government regulations. Departures from established standards become objects of major concern.

A landmark in aeronautical design, the world's first jet airliner, the de Havilland Comet, first flew in 1949. Early models suffered from catastrophic airframe metal fatigue, causing a series of widely publicised accidents. The Royal Aircraft Establishment investigation at founded the science of aircraft crash reconstruction. After 3000 pressurisation cycles in a specially constructed pressure chamber, airframe failure was found to be due to stress concentration, a consequence of the square shaped windows. The windows had been engineered to be glued and riveted, but had been punch riveted only. Unlike drill riveting, the imperfect nature of the hole created by punch riveting may cause the start of fatigue cracks around the rivet.

The Lockheed L-188 Electra turboprop, first flown in 1957 became a costly lesson in controlling oscillation and planning around . Its 1959 crash of Braniff Flight 542 showed the difficulties that the airframe industry and its airline customers can experience when adopting new .

The incident bears comparison with the Airbus A300 crash on takeoff of the American Airlines Flight 587 in 2001, after its vertical stabilizer broke away from the fuselage, called attention to operation, maintenance and design issues involving composite materials that are used in many recent airframes.The A300 had experienced other structural problems but none of this magnitude.


 Aircraft's main body section. It holds crew, passengers, and cargo In single-engine aircraft, it will usually contain an engine, as well, although in some amphibious aircraft the single engine is mounted on a pylon attached to the fuselage, which in turn is used as a floating . The fuselage also serves to position control and stabilization surfaces in specific relationships to lifting surfaces, which is required for aircraft stability and maneuverability.

Fuselage of a Boeing 787


Truss Structure

This type of structure is still in use in many lightweight aircraft using . A box truss fuselage structure can also be built out of wood—often covered with plywood. Simple box structures may be rounded by the addition of supported lightweight stringers, allowing the fabric covering to form a more aerodynamic shape, or one more pleasing to the eye.

Geodesic Construction

Geodesic structural elements were used by Barnes Wallis for British Vickers between the wars and into World War II to form the whole of the fuselage, including its aerodynamic shape. In this type of construction multiple flat strip stringers are wound about the formers in opposite spiral directions, forming a basket-like appearance. This proved to be light, strong, and rigid and had the advantage of being made almost entirely of wood. A similar construction using aluminum alloy was used in the with less materials than would be required for other structural types. The geodesic structure is also redundant and so can survive localized damage without catastrophic failure. A fabric covering over the structure completed the aerodynamic shell (see the Vickers Wellington for an example of a large warplane which uses this process). The logical evolution of this is the creation of fuselages using molded plywood, in which multiple sheets are laid with the grain in differing directions to give the monocoque type below.

Monocoque Shell

In this method, the exterior surface of the fuselage is also the primary structure. A typical early form of this (see the Lockheed Vega)plywood, where the layers of plywood are formed over a "plug" or within a mold. A later form of this structure uses fiberglass cloth impregnated with polyester or epoxy resin, instead of plywood, as the skin. A simple form of this used in some amateur-built aircraft uses rigid expanded foam plastic as the core, with a fiberglass covering, eliminating the necessity of fabricating molds, but requiring more effort in finishing (see the Rutan VariEze). An example of a larger molded plywood aircraft is the de Havilland Mosquito fighter/light bomber of . No plywood-skin fuselage is truly monocoque, since stiffening elements are incorporated into the structure to carry concentrated loads that would otherwise buckle the thin skin. The use of molded fiberglass using negative ("female") molds (which give a nearly finished product) is prevalent in the series production of many modern sailplanes. The use of molded composites for fuselage structures is being extended to large passenger aircraft such as the Dreamliner (using pressure-molding on female molds).


This is the preferred method of constructing an all-aluminum. First, a series of frames in the shape of the fuselage cross sections are held in position on a rigid fixture. These frames are then joined with lightweight longitudinal elements called . These are in turn covered with a skin of sheet aluminum, attached by or by bonding with special adhesives. The fixture is then disassembled and removed from the completed fuselage shell, which is then fitted out with wiring, controls, and interior equipment such as seats and luggage bins. Most modern large aircraft are built using this technique, but use several large sections constructed in this fashion which are then joined with to form the complete fuselage. As the accuracy of the final product is determined largely by the costly fixture, this form is suitable for series production, where a large number of identical aircraft are to be produced. Early examples of this type include the Douglas Aircraft DC-2 and DC-3 civil aircraft and the Boeing B-17 Flying Fortress. Most metal light aircraft are constructed using this process.

Both monocoque and semi-monocoque are referred to as "stressed skin" structures as all or a portion of the external load (i.e. from wings and empennage, and from discrete masses such as the engine) is taken by the surface covering. In addition, all the load from internal pressurization(skin tension) by the external skin.

The proportioning of loads between the components is a design choice dictated largely by the dimensions, strength, and elasticity of the components available for construction and whether or not a design is intended to be "self jigging", not requiring a complete fixture for alignment.


Early aircraft were constructed of wood frames covered in fabric. As monoplanes became popular, metal frames improved the strength, which eventually led to all-metal-structure aircraft, with metal covering for all its exterior surfaces - this was first pioneered in the second half of 1915. Some modern aircraft are constructed with composite materials for major control surfaces, wings, or the entire fuselage such as the Boeing 787. On the 787, it makes possible higher pressurization levels and larger windows for passenger comfort as well as lower weight to reduce operating costs. The Boeing 787 weighs 1500 lb less than if it were an all-aluminum assembly.


Cockpit windshields on the Airbus A320 must withstand bird strikes up to 350 kt and are made of chemically strengthened glass. They are usually composed of three layers or plies, of glass or plastic : the inner two are 8 mm (0.3 in.) thick each and are structural, while the outer ply, about 3 mm thick, is a barrier against foreign object damage and . It must prevent fogging inside the cabin and de-ice from −50 °C (−58 °F). This was previously done with thin wires similar to a rear car window but is now accomplished with a transparent, nanometers-thick coating of indium tin oxide sitting between plies, electrically conductive and thus transmitting heat. Curved glass improves aerodynamics but sight criteria also needs larger panes. A cockpit windshield is composed of 4–6 panels, 35 kg (77 lb.) each on an Airbus A320. In its lifetime, an average aircraft goes through three or four windshields, and the market is shared evenly between OEM and higher margins .

Cabin windows, made from much lighter than glass stretched acrylic glass, consists of multiple panes: an outer one built to support four times the maximum cabin pressure, an inner one for redundancy and a scratch pane near the passenger. Acrylic is susceptible to crazing : a network of fine cracks appears but can be polished to restore optical transparency, removal and polishing typically undergo every 2–3 years for uncoated windows.

Wing İntegration

Flying wing" aircraft, such as the Northrop YB-49 Flying Wing and the Northrop B-2 Spirit bomber have no separate fuselage; instead what would be the fuselage is a thickened portion of the wing structure.

Conversely, there have been a small number of aircraft designs which have no separate wing, but use the fuselage to generate lift. Examples include National Aeronautics and Space Administration's experimental lifting body designs and the Vought XF5U-1 Flying Flapjack.

A blended wing body can be considered a mixture of the above. It carries the useful load in a fuselage producing lift. A modern example is Boeing X-48. One of the earliest aircraft using this design approach is Burnelli CBY-3, which fuselage was airfoil shaped to produce lift.


Landing Gear

Landing gear is the undercarriage of an aircraft or spacecraft and may be used for either takeoff or landing. For aircraft it is generally needed for both. It was also formerly called alighting gear by some manufacturers, such as the Glenn L. Martin Company. For aircraft, Stinton makes the terminology distinction undercarriage (British) landing gear (US).

Retraction of the landing gear of a Airbus 330 after take-off

For aircraft, the landing gear supports the craft when it is not flying, allowing it to take off, land, and taxi without damage. Wheeled landing gear is the most common with skis or floats needed to operate from snow/ice/water and skids for vertical operation on land. Faster aircraft have retractable undercarriages, which fold away during flight to reduce drag.

The 20-wheeled main undercarriage of an Airbus A380-800

Some unusual landing gear have been evaluated experimentally. These include: no landing gear (to save weight), made possible by operating from a catapult cradle and flexible landing deck: air cushion (to enable operation over a wide range of ground obstacles and water/snow/ice); tracked (to reduce runway loading).

For launch vehicles and spacecraft landers, the landing gear usually only supports the vehicle on landing, and is not used for takeoff or surface movement.


Aircraft landing gear includes wheels equipped with solid shock absorbers on light planes, and air/oil oleo struts on larger aircraft. Skis are used for operating from snow and floats from water. (Helicopters use skids, pontoons or wheels depending on their size and role.)

The landing gear represents 2.5 to 5% of the MTOW and 1.5 to 1.75% of the aircraft cost but 20% of the airframe direct maintenance cost. A suitably-designed wheel can support 30 t (66,000 lb), tolerate a ground speed of 300 km/h and roll a distance of 500,000 km (310,000 mi) ; it has a 20,000 hours time between overhaul and a 60,000 hours or 20 years life time.

Gear Arrangements

Wheeled undercarriages normally come in two types:

conventional or "taildragger" undercarriage, where there are two main wheels towards the front of the aircraft and a single, much smaller, wheel or skid at the rear. The same helicopter arrangement is called tricycle tailwheel.
tricycle undercarriage where there are two main wheels (or wheel assemblies) under the wings and a third smaller wheel in the nose. The same helicopter arrangement is called tricycle nosewheel.
The taildragger arrangement was common during the early propeller era, as it allows more room for propeller clearance. Most modern aircraft have tricycle undercarriages. Taildraggers are considered harder to land and take off (because the arrangement is usually unstable, that is, a small deviation from straight-line travel will tend to increase rather than correct itself), and usually require special pilot training. A small tail wheel or skid/bumper may be added to a tricycle undercarriage to prevent damage to the underside of the fuselage if over-rotation occurs on take-off leading to a tail strike. Aircraft with tail-strike protection include the B-29 Superfortress, Boeing 727 trijet and Concorde. Some aircraft with retractable conventional landing gear have a fixed tailwheel. Hoerner estimated the drag of the Me-109 fixed tailwheel and compared it with that of other protrusions such as the pilot's canopy.

A third arrangement (known as tandem or bicycle) has the main and nose gear located fore and aft of the center of gravity under the fuselage with outriggers on the wings. This is used when there is no convenient location on either side of the fuselage to attach the main undercarriage or to store it when retracted. Examples include the Lockheed U-2 spy plane and the Harrier Jump Jet. The B-52 bomber uses a similar arrangement, except that the fore and aft gears each have two twin-wheel units side by side.

Quadricycle gear is similar to bicycle but with two sets of wheels displaced laterally in the fore and aft positions. Raymer classifies the B-52 gear as quadricycle. The experimental Fairchild XC-120 Packplane had quadricycle gear located in the engine nacelles to allow unrestricted access beneath the fuselage for attaching a large freight container.

Retractable Gear

To decrease drag in flight undercarriages retract into the wings and/or fuselage with wheels flush with the surrounding surface or concealed behind flush-mounted doors; this is called retractable gear. If the wheels don't retract completely but protrude partially exposed to the airstream, it is called a semi-retractable gear.

Retraction of the landing gear of a Airbus 330 after take-off

Most retractable gear is hydraulically operated, though some is electrically operated or even manually operated on very light aircraft. The landing gear is stowed in a compartment called a wheel well.

Pilots confirming that their landing gear is down and locked refer to "three greens" or "three in the green.", a reference to the electrical indicator lights (or painted panels of mechanical indicator units) from the nosewheel/tailwheel and the two main gears. Blinking green lights or red lights indicate the gear is in transit and neither up and locked or down and locked. When the gear is fully stowed up with the up-locks secure, the lights often extinguish to follow the dark cockpit philosophy; some airplanes have gear up indicator lights.

Redundant systems are used to operate the landing gear and redundant main gear legs may also be provided so the aircraft can be landed in a satisfactory manner in a range of failure scenarios. The Boeing 747 was given four separate and independent hydraulic systems (when previous airliners had two) and four main landing gear posts (when previous airliners had two). Safe landing would be possible if two main gear legs were torn off provided they were on opposite sides of the fuselage.In the case of power failure in a light aircraft, an emergency extension system is always available. This may be a manually operated crank or pump, or a mechanical free-fall mechanism which disengages the uplocks and allows the landing gear to fall under gravity.

Large Aircraft

As aircraft weights have increased more wheels have been added and runway thickness has increased to keep within the runway loading limit. This progression is shown by Torenbeek.A Lockheed JetStar, with 4 wheels supporting about 40,000lb, needed a 10in thick flexible (asphalt) pavement. The thickness rose to 25in for a McDonnell Douglas DC-10/10 with about 400,000lb supported on 8 wheels. Heavier aircraft were able to operate from the same thickness pavements by using more wheels. For example, the heavier McDonnell Douglas DC-10/30 had 10 wheels and the first Boeing 747, weighing about 700,000lb, had 16 wheels. The same-weight Lockheed C-5, with 24 wheels, only needs an 18in pavement.

The earliest "giant" aircraft placed in quantity production, the Zeppelin-Staaken R.VI German World War I long-range bomber of 1916, used eighteen wheels for its undercarriage, split between two wheels on its nose gear struts, and sixteen wheels on its main gear units — split into four side-by-side quartets each, two quartets of wheels per side — under each tandem engine nacelle, to support its loaded weight of almost 12 metric tons. Multiple "tandem wheels" on an aircraft — particularly for cargo aircraft, mounted to the fuselage lower sides as retractable main gear units on modern designs — were first seen during World War II, on the experimental German Arado Ar 232 cargo aircraft, which used a row of eleven "twinned" fixed wheel sets directly under the fuselage centerline to handle heavier loads while on the ground.Many of today's large cargo aircraft use this arrangement for their retractable main gear setups (usually mounted on the lower corners of the central fuselage structure). The Airbus A340-500/-600 has an additional four-wheel undercarriage bogie on the fuselage centerline, much like the twin-wheel unit in the same general location, used on later DC-10 and MD-11 airliners.

The prototype Convair XB-36, a very heavy aircraft for its day, had most of its weight on two main wheels which needed runways at least 22 inches thick. There were only three in the world. Production aircraft used two 4-wheel bogies which allowed the aircraft to use any airfield suitable for a B-29.

The Boeing 747 has five sets of wheels: a nosewheel assembly and four sets of four-wheel bogies. A set is located under each wing, and two inner sets are located in the fuselage, a little rearward of the outer bogies, adding up to a total of eighteen wheels and tires. The Airbus A380 also has a four-wheel bogie under each wing with two sets of six-wheel bogies under the fuselage.

The world's largest jet cargo aircraft, the Soviet Antonov An-225 has 4 wheels on the twin-strut nose gear units (as its smaller "stablemate", the Antonov An-124 also uses), and 28 main gear wheel/tire units, adding up to a total of 32 wheels and tires.

STOL Aircraft

STOL aircraft have a higher sink-rate requirement if a carrier-type, no-flare landing technique has to be adopted to reduce touchdown scatter. For example, the Saab 37 Viggen, with landing gear designed for a 5m/sec impact, could use a carrier-type landing and HUD. 

The de Havilland Canada DHC-4 Caribou used long-stroke legs to land from a steep approach with no float.

Operation From Water

A flying boat has a lower fuselage with the shape of a boat hull giving it buoyancy. Wing-mounted floats or stubby wing-like sponsons are added for stability. Sponsons are attached to the lower sides of the fuselage.

A floatplane has two or three streamlined floats. Amphibious floats have retractable wheels for land operation.

An amphibious aircraft or amphibian usually has two distinct landing gears, namely a "boat" hull/floats and retractable wheels, which allow it to operate from land or water.

Beaching gear is detachable wheeled landing gear that allows a non-amphibious floatplane or flying boat to be maneuvered on land. It is used for aircraft maintenance and storage and is either carried in the aircraft or kept at a slipway. Beaching gear may consist of individual detachable wheels or a cradle that supports the entire aircraft. In the former case, the beaching gear is manually attached or detached with the aircraft in the water; in the latter case, the aircraft is maneuvered onto the cradle.

Helicopters able to land on water use floats or a hull and floats.

For take-off a step and planing bottom are required to lift from the floating position to planing on the surface. For landing a cleaving action is required to reduce the impact with the surface of the water. A vee bottom parts the water and chines deflect the spray to prevent it damaging vulnerable parts of the aircraft. Additional spray control may be needed using spray strips or inverted gutters. A step is added to the hull, just behind the center of gravity, to stop water clinging to the afterbody so the aircraft can accelerate to flying speed. The step allows air, known as ventilation air, to break the water suction on the afterbody.Two steps were used on the Kawanishi H8K.A step increases the drag in flight. The drag contribution from the step can be reduced with a fairing. A faired step was introduced on the Short SunderlandIII.

One goal of seaplane designers was the development of an open ocean seaplane capable of routine operation from very rough water. This led to changes in seaplane hull configuration. High length/beam ratio hulls and extended afterbodies improved rough water capabilities.A hull much longer than its width also reduced drag in flight.An experimental development of the Martin Marlin, the Martin M-270, was tested with a new hull with a greater length/beam ratio of 15 obtained by adding 6 feet to both the nose and tail.Rough-sea capability can be improved with lower take-off and landing speeds because impacts with waves are reduced. The Shin Meiwa US-1A is a STOL amphibian with blown flaps and all control surfaces. The ability to land and take-off at relatively low speeds of about 45 knots and the hydrodynamic features of the hull, long length/beam ratio and inverted spray gutter for example, allow operation in wave heights of 15 feet.The inverted gutters channel spray to the rear of the propeller discs.

Low speed maneuvring is necessary between slipways and buoys and take-off and landing areas. Water rudders are used on seaplanes ranging in size from the Republic RC-3 Seabee to the Beriev A-40 Hydro flaps were used on the Martin Marlin and Martin SeaMaster. Hydroflaps, submerged at the rear of the afterbody, act as a speed brake or differentially as a rudder. A fixed fin, known as a skeg, has been used for directional stability. A skeg, was added to the second step on the Kawanishi H8K flying boat hull.

High speed impacts in rough water between the hull and wave flanks may be reduced using hydro-skis which hold the hull out of the water at higher speeds. Hydro skis replace the need for a boat hull and only require a plain fuselage which planes at the rear. Alternatively skis with wheels can be used for land-based aircraft which start and end their flight from a beach or floating barge. Hydro-skis with wheels were demonstrated as an all-purpose landing gear conversion of the Fairchild C-123, known as the Panto-base Stroukoff YC-134. A seaplane designed from the outset with hydro-skis was the Convair F2Y Sea Dart prototype fighter. The skis incorporated small wheels, with a third wheel on the fuselage, for ground handling.

In the 1950s hydro-skis were envisaged as a ditching aid for large piston-engined aircraft.Water-tank tests done using models of the Lockheed Constellation, Douglas DC-4 and Lockheed Neptune concluded that chances of survival and rescue would be greatly enhanced by preventing critical damage associated with ditching.

Shipboard Operation

The landing gear on fixed-wing aircraft that land on aircraft carriers have a higher sink-rate requirement because the aircraft are flown onto the deck with no landing flare. Other features have related to catapult take-off requirements for specific aircraft. For example, the Buccaneer was pulled down onto its tail-skid to set the required nose-up attitude. The naval McDonnell Douglas F-4 Phantom II in UK service needed an extending nosewheel leg to set the wing attitude at launch.

The landing gear for an aircraft using a ski-jump on take-off is subjected to loads of 0.5g which also last for much longer than a landing impact.

Helicopters may have a deck-lock harpoon to anchor them to the deck.

In-Flight Use

Some aircraft have a requirement to use the landing-gear as a speed brake.

Flexible mounting of the stowed main landing-gear bogies on the Tupolev Tu-22R raised the aircraft flutter speed to 550 kts. The bogies oscillated within the nacelle under the control of dampers and springs as an anti-flutter device.

Gear Common To Different Aircraft

Some experimental aircraft have used gear from existing aircraft to reduce program costs. The Martin-Marietta X-24 lifting body used the nose/main gear from the North American T-39 / Northrop T-38 and the Grumman X-29 from the Northrop F-5 / General Dynamics F-16.

Other Types


When an airplane needs to land on surfaces covered by snow, the landing gear usually consists of skis or a combination of wheels and skis.


Some aircraft use wheels for takeoff and jettison them when airborne for improved streamlining without the complexity, weight and space requirements of a retraction mechanism. The wheels are sometimes mounted onto axles that are part of a separate "dolly" (for main wheels only) or "trolley" (for a three-wheel set with a nosewheel) chassis. Landing is done on skids or similar simple devices.

Historical examples include the "dolly"-using Messerschmitt Me 163 Komet rocket fighter,the Messerschmitt Me 321 Gigant troop glider, and the first eight "trolley"-using prototypes of the Arado Ar 234 jet reconnaissance bomber. The main disadvantage to using the takeoff dolly/trolley and landing skid(s) system on German World War II aircraft – intended for a sizable number of late-war German jet and rocket-powered military aircraft designs – was that aircraft would likely be scattered all over a military airfield after they had landed from a mission, and would be unable to taxi on their own to an appropriately hidden "dispersal" location, which could easily leave them vulnerable to being shot up by attacking Allied fighters. A related contemporary example are the wingtip support wheels ("pogos") on the Lockheed U-2 reconnaissance aircraft, which fall away after take-off and drop to earth; the aircraft then relies on titanium skids on the wingtips for landing.

Rearwards And Sideways Retraction

Some main landing gear struts on World War II aircraft, in order to allow a single-leg main gear to more efficiently store the wheel within either the wing or an engine nacelle, rotated the single gear strut through a 90° angle during the rearwards-retraction sequence to allow the main wheel to rest "flat" above the lower end of the main gear strut, or flush within the wing or engine nacelles, when fully retracted. Examples are the Curtiss P-40, Vought F4U Corsair, Grumman F6F Hellcat, Messerschmitt Me 210 and Junkers Ju 88. The Aero Commander family of twin-engined business aircraft also shares this feature on the main gears, which retract aft into the ends of the engine nacelles. The rearward-retracting nosewheel strut on the Heinkel He 219 and the forward-retracting nose gear strut on the later Cessna Skymaster similarly rotated 90 degrees as they retracted.

A Royal Air Force P-47 with its raked-forward main gear, and rearward-angled main wheel position (when retracted) indicated by the just-visible open wheel door.

On most World War II single-engined fighter aircraft (and even one German heavy bomber design) with sideways retracting main gear, the main gear that retracted into the wings was meant to be raked forward, towards the aircraft's nose in the "down" position for better ground handling, with a retracted position that placed the main wheels at some angle "behind" the main gear's attachment point to the airframe – this led to a complex angular geometry for setting up the "pintle" angles at the top ends of the struts for the retraction mechanism's axis of rotation, with some aircraft, like the P-47 Thunderbolt and Grumman Bearcat, even mandating that the main gear struts lengthen as they were extended down from the wings to assure proper ground clearance for their large four-bladed propellers. One exception to the need for this complexity in many WW II fighter aircraft was Japan's famous Zero fighter, whose main gear stayed at a perpendicular angle to the centerline of the aircraft when extended, as seen from the side.

Variable Axial Position Of Main Wheels

The main wheels on the Vought F7U Cutlass could move 20 inches between a forward and aft position. The forward position was used for take-off to give a longer lever-arm for pitch control and greater nose-up attitude. The aft position was used to reduce landing bounce and reduce risk of tip-back during ground handling.

Tandem Layout

The tandem or bicycle layout is used on the Hawker Siddeley Harrier, which has two main-wheels behind a single nose-wheel under the fuselage and a smaller wheel near the tip of each wing. On second generation Harriers, the wing is extended past the outrigger wheels to allow greater wing-mounted munition loads to be carried, or to permit wing-tip extensions to be bolted on for ferry flights.

A tandem layout was evaluated by Martin using a Martin A-26 to support its use on Martin's first jet bomber, the Martin XB-48. This configuration proved so manoeuvrable that it was also selected for the B-47 Stratojet.It was also used on the U-2, Myasishchev M-4, Yakovlev Yak-25, Yak-28, Sud Aviation Vautour. A variation of the multi tandem layout is also used on the B-52 Stratofortress which has four main wheel bogies (two forward and two aft) underneath the fuselage and a small outrigger wheel supporting each wing-tip. The B-52's landing gear is also unique in that all four pairs of main wheels can be steered. This allows the landing gear to line up with the runway and thus makes crosswind landings easier (using a technique called crab landing). Since tandem aircraft cannot rotate for takeoff, the forward gear must be long enough to give the wings the correct angle of attack during takeoff. During landing, the forward gear must not touch the runway first, otherwise the rear gear will slam down and may cause the aircraft to bounce and become airborne again.

Crosswind Landing Accommodation

One very early undercarriage incorporating castoring for crosswind landings was pioneered on the Bleriot VIII design of 1908. It was later used in the much more famous Blériot XI Channel-crossing aircraft of 1909 and also copied in the earliest examples of the Etrich Taube. In this arrangement the main landing gear's shock absorption was taken up by a vertically sliding bungee cord-sprung upper member. The vertical post along which the upper member slid to take landing shocks also had its lower end as the rotation point for the forward end of the main wheel's suspension fork, allowing the main gear to pivot on moderate crosswind landings.

Manually-adjusted main-gear units on the B-52 can be set for crosswind take-offs. It rarely has to be used from SAC-designated airfields which have major runways in the predominant strongest wind direction.The Lockheed C-5 Galaxy has swivelling 6-wheel main units for crosswind landings and castoring rear units to prevent tire scrubbing on tight turns.

"Kneeling" Gear

One of the very first aircraft to use a "kneeling" function in its undercarriage design was the World War II German Arado Ar 232 cargo/transport aircraft, produced in small numbers as both a twin-engined version, and one with four engines - both the nosegear, and the wing-mounted, inwards-retracting main landing gear were designed to have a "kneeling" function in their design to assist in loading/unloading cargo, and to also allow its unique, exposed fixed ventral fuselage-centreline set of eleven "twinned" auxiliary wheel sets to more firmly support the fuselage on soft ground, and to enable taxiing the aircraft over ditches and other ground obstacles.

Some early U.S. Navy jet fighters were equipped with “kneeling” nose gear consisting of small steerable auxiliary wheels on short struts located forward of the primary nose gear, allowing the aircraft to be taxied tail-high with the primary nose gear retracted. This feature was intended to enhance safety aboard aircraft carriers by redirecting the hot exhaust blast upwards, and to reduce hangar space requirements by enabling the aircraft to park with its nose underneath the tail of a similarly equipped jet. Kneeling gear was used on the North American FJ-1 Fury and on early versions of the McDonnell F2H Banshee, but was found to be of little use operationally, and was omitted from later Navy fighters.

The nosewheel on the Lockheed C-5,partially retracts against a bumper to assist in loading and unloading of cargo using ramps through the forward, "tilt-up" hinged fuselage nose while stationary on the ground. The aircraft also tilts backwards.The Messier twin-wheel main units fitted to the Transall and other cargo aircraft can tilt forward or backward as necessary.

The Boeing AH-64 Apache helicopter is able to kneel to fit inside the cargo hold of a transport aircraft and for storage.

Tail Support

Aircraft landing gear includes devices to prevent fuselage contact with the ground by tipping back when the aircraft is being loaded. Some commercial aircraft have used tail props when parked at the gate.The Douglas C-54 had a critical CG location which required a ground handling strut.The Lockheed C-130 and Boeing C-17 Globemaster III use ramp supports.


To minimize drag, modern gliders usually have a single wheel, retractable or fixed, centered under the fuselage, which is referred to as monowheel gear or monowheel landing gear. Monowheel gear is also used on some powered aircraft, where drag reduction is a priority, such as the Europa XS. Much like the Me 163 rocket fighter, some gliders from prior to the Second World War used a take-off dolly that was jettisoned on take-off and then landed on a fixed skid.This configuration is necessarily accompanied with a taildragger.


Light helicopters use simple landing skids to save weight and cost. The skids may have attachment points for wheels so that they can be moved for short distances on the ground. Skids are impractical for helicopters weighing more than four tons. Some high-speed machines have retractable wheels, but most use fixed wheels for their robustness, and to avoid the need for a retraction mechanism.


Experimental tailsitter aircraft use landing gear located in their tails for VTOL operation.

Light Aircraft

For light aircraft a type of landing gear which is economical to produce is a simple wooden arch laminated from ash, as used on some homebuilt aircraft. A similar arched gear is often formed from spring steel. The Cessna Airmaster was among the first aircraft to use spring steel landing gear. The main advantage of such gear is that no other shock-absorbing device is needed; the deflecting leaf provides the shock absorption.

Folding Gear

The limited space available to stow landing gear has led to many complex retraction mechanisms, each unique to a particular aircraft. An early example, the German Bomber B combat aircraft design competition winner, the Junkers Ju 288, had a complex "folding" main landing gear unlike any other aircraft designed by either Axis or Allied sides in the war: its single oleo strut was only attached to the lower end of its Y-form main retraction struts, handling the twinned main gear wheels, and folding by swiveling downwards and aftwards during retraction to "fold" the maingear's length to shorten it for stowage in the engine nacelle it was mounted in.However, the single pivot-point design also led to numerous incidents of collapsed maingear units for its prototype airframes.


Increased contact area can be obtained with very large wheels, lots of smaller wheels or track-type gear. Tracked gear made by Dowty was fitted to a Westland Lysander in 1938 for taxi tests, then a Fairchild Cornell and a Douglas Boston.Bonmartini, in Italy, fitted tracked gear to a Piper Cub in 1951.Track-type gear was also tested using a C-47, C-82 and B-50. A much heavier aircraft, an XB-36, was made available for further tests, although there was no intention of using it on production aircraft. The stress on the runway was reduced to one third that of the B-36 four-wheel bogie.

Ground Carriage

Ground carriage is a long term (after 2030) concept of flying without landing gear. It is one of many aviation technologies being proposed to reduce greenhouse gas emissions.Leaving the landing gear on the ground reduces weight and drag. Leaving it behind after take-off was done for a different reason, ie with military objectives, during World War II using the "dolly" and "trolley" arrangements of the German Me 163B rocket fighter and Arado Ar 234A prototype jet recon-bomber.


There are several types of steering. Taildragger aircraft may be steered by rudder alone (depending upon the prop wash produced by the aircraft to turn it) with a freely pivoting tail wheel, or by a steering linkage with the tail wheel, or by differential braking (the use of independent brakes on opposite sides of the aircraft to turn the aircraft by slowing one side more sharply than the other). Aircraft with tricycle landing gear usually have a steering linkage with the nosewheel (especially in large aircraft), but some allow the nosewheel to pivot freely and use differential braking and/or the rudder to steer the aircraft, like the Cirrus SR22.

Some aircraft require that the pilot steer by using rudder pedals; others allow steering with the yoke or control stick. Some allow both. Still others have a separate control, called a tiller, used for steering on the ground exclusively.


When an aircraft is steered on the ground exclusively using the rudder, it needs a substantial airflow past the rudder, which can be generated either by the forward motion of the aircraft or by propeller slipstream. Rudder steering requires considerable practice to use effectively. Although it needs airflow past the rudder, it has the advantage of not needing any friction with the ground, which makes it useful for aircraft on water, snow or ice.


Some aircraft link the yoke, control stick, or rudder directly to the wheel used for steering. Manipulating these controls turns the steering wheel (the nose wheel for tricycle landing gear, and the tail wheel for taildraggers). The connection may be a firm one in which any movement of the controls turns the steering wheel (and vice versa), or it may be a soft one in which a spring-like mechanism twists the steering wheel but does not force it to turn. The former provides positive steering but makes it easier to skid the steering wheel; the latter provides softer steering (making it easy to overcontrol) but reduces the probability of skidding. Aircraft with retractable gear may disable the steering mechanism wholly or partially when the gear is retracted.

Differential Braking

Differential braking depends on asymmetric application of the brakes on the main gear wheels to turn the aircraft. For this, the aircraft must be equipped with separate controls for the right and left brakes (usually on the rudder pedals). The nose or tail wheel usually is not equipped with brakes. Differential braking requires considerable skill. In aircraft with several methods of steering that include differential braking, differential braking may be avoided because of the wear it puts on the braking mechanisms. Differential braking has the advantage of being largely independent of any movement or skidding of the nose or tailwheel.


A tiller in an aircraft is a small wheel or lever, sometimes accessible to one pilot and sometimes duplicated for both pilots, that controls the steering of the aircraft while it is on the ground. The tiller may be designed to work in combination with other controls such as the rudder or yoke. In large airliners, for example, the tiller is often used as the sole means of steering during taxi, and then the rudder is used to steer during takeoff and landing, so that both aerodynamic control surfaces and the landing gear can be controlled simultaneously when the aircraft is moving at aerodynamic speeds.

Tires And Wheels

The specified selection criterion, e.g., minimum size, weight, or pressure, are used to select suitable tires and wheels from manufacturer's catalog and industry standards found in the Aircraft Yearbook published by the Tire and Rim Association, Inc.

Inflation Pressure

Provided that the wheel load and configuration of the landing gear remain unchanged, the weight and volume of the tire will decrease with an increase in inflation pressure.From the flotation standpoint, a decrease in the tire contact area will induce a higher bearing stress on the pavement which may reduce the number of airfields available to the aircraft. Braking will also become less effective due to a reduction in the frictional force between the tires and the ground. In addition, the decrease in the size of the tire, and hence the size of the wheel, could pose a problem if internal brakes are to be fitted inside the wheel rims. The arguments against higher pressure are of such a nature that commercial operators generally prefer the lower pressures in order to maximize tire life and minimize runway stress. To prevent punctures from stones Philippine Airlines had to operate their Hawker Siddeley 748 aircraft with pressures as low as the tire manufacturer would permit.However, too low a pressure can lead to an accident as in the Nigeria Airways Flight 2120.

A rough general rule for required tire pressure is given by the manufacturer in their catalog. Goodyear for example advises the pressure to be 4% higher than required for a given weight or as fraction of the rated static load and inflation.

Tires of many commercial aircraft are required to be filled with nitrogen, and not subsequently diluted with more than 5% oxygen, to prevent auto-ignition of the gas which may result from overheating brakes producing volatile vapors from the tire lining.

Naval aircraft use different pressures when operating from a carrier and ashore. For example, the Northrop Grumman E-2 Hawkeye tire pressures are 260 psi on ship and 210 psi ashore.En-route deflation is used in tne Lockheed C-5 Galaxy to suit airfield conditions at the destination but adds excessive complication to the landing gear and wheels

Future Developments

Noise Airport community noise is an environmental issue which has brought into focus the contribution of aerodynamic noise from the landing gear. A NASA long-term goal is to confine aircraft objectional noise to within the airport bounary. During the approach to land the landing gear is lowered several miles from touchdown and the landing gear is the dominant airframe noise source, followed by deployed highlift devices. With engines at a reduced power setting on the approach it is necessary to reduce airframe noise to make a significant reduction to total aircraft noise.The addition of add-on fairings is one approach for reducing the noise from the landing gear with a longer term approach to address noise generation during initial design.

Semi-active gear Airline specifications require an airliner to reach up to 90,000 take-offs and landings and roll 500,000 km on the ground in its lifetime. Conventional landing gear is designed to absorb the energy of a landing and doesn't perform well at reducing ground-induced vibrations in the airframe during landing ground roll, taxi and take-off. Airframe vibrations and fatigue damage can be reduced using semi-active oleos which vary damping over a wide range of ground speeds and runway quality.


Malfunctions or human errors (or a combination of these) related to retractable landing gear have been the cause of numerous accidents and incidents throughout aviation history. Distraction and preoccupation during the landing sequence played a prominent role in the approximately 100 gear-up landing incidents that occurred each year in the United States between 1998 and 2003.A gear-up landing, also known as a belly landing, is an accident that results from the pilot forgetting to lower the landing gear, or being unable to do so because of a malfunction. Although rarely fatal, a gear-up landing can be very expensive if it causes extensive airframe/engine damage. For propeller-driven aircraft a prop strike may require an engine overhaul.

Some aircraft have a stiffened fuselage underside or added features to minimize structural damage in a wheels-up landing. When the Cessna Skymaster was converted for a military spotting role (the O-2 Skymaster), fiberglass railings were added to the length of the fuselage; they were adequate to support the aircraft without damage if it was landed on a grassy surface.

The Bombardier Dash 8 is notorious for its landing gear problems. There were three incidents involved, all of them involving Scandinavian Airlines, flights SK1209, SK2478, and SK2867. This led to Scandinavian retiring all of its Dash 8s. The cause of these incidents was a locking mechanism that failed to work properly. This also caused concern for the aircraft for many other airlines that found similar problems, Bombardier Aerospace ordered all Dash 8s with 10,000 or more hours to be grounded, it was soon found that 19 Horizon Airlines Dash 8s had locking mechanism problems, so did 8 Austrian Airlines planes, this did cause several hundred flights to be canceled.

On September 21, 2005, JetBlue Airways Flight 292 successfully landed with its nose gear turned 90 degrees sideways, resulting in a shower of sparks and flame after touchdown.

On November 1, 2011, LOT Polish Airlines Flight LO16 successfully belly landed at Warsaw Chopin Airport due to technical failures; all 231 people on board escaped without injury.

Emergency Extension Systems

In the event of a failure of the aircraft's landing gear extension mechanism a backup is provided. This may be an alternate hydraulic system, a hand-crank, compressed air (nitrogen), pyrotechnic or free-fall system.

A free-fall or gravity drop system uses gravity to deploy the landing gear into the down and locked position. To accomplish this the pilot activates a switch or mechanical handle in the cockpit, which releases the up-lock. Gravity then pulls the landing gear down and deploys it. Once in position the landing gear is mechanically locked and safe to use for landing.

Ground Resonance İn Rotorcraft

Rotorcraft with fully articulated rotors may experience a dangerous and self-perpetuating phenomenon known as ground resonance, in which the unbalanced rotor system vibrates at a frequency coinciding with the natural frequency of the airframe, causing the entire aircraft to violently shake or wobble in contact with the ground.Ground resonance occurs when shock is continuously transmitted to the turning rotors through the landing gear, causing the angles between the rotor blades to become uneven; this is typically triggered if the aircraft touches the ground with forward or lateral motion, or touches down on one corner of the landing gear due to sloping ground or the craft's flight attitude.The resulting violent oscillations may cause the rotors or other parts to catastrophically fail, detach, and/or strike other parts of the airframe; this can destroy the aircraft in seconds and critically endanger persons unless the pilot immediately initiates a takeoff or closes the throttle and reduces rotor pitch.Ground resonance was cited in 34 National Transportation Safety Board incident and accident reports in the United States between 1990 and 2008.

Rotorcraft with fully articulated rotors typically have shock-absorbing landing gear designed to prevent ground resonance; however, poor landing gear maintenance and improperly inflated tires may contribute to the phenomenon.Helicopters with skid-type landing gear are less prone to ground resonance than those with wheels.


Unauthorized passengers have been known to stowaway on larger aircraft by climbing a landing gear strut and riding in the compartment meant for the wheels. There are extreme dangers to this practice, with numerous deaths reported. Dangers include a lack of oxygen at high altitude, temperatures well below freezing, crush injury or death from the gear retracting into its confined space, and falling out of the compartment during takeoff or landing.


Launch Vehicles

Landing gear has traditionally not been used on the vast majority of space launch vehicles, which take off vertically and are destroyed on falling back to earth. With some exceptions for suborbital vertical-landing vehicles (e.g., Masten Xoie or the Armadillo Aerospace' Lunar Lander Challenge vehicle), or for spaceplanes that use the vertical takeoff, horizontal landing (VTHL) approach (e.g., the Space Shuttle, or the USAF X-37), landing gear have been largely absent from orbital vehicles during the early decades since the advent of spaceflight technology, when orbital space transport has been the exclusive preserve of national-monopoly governmental space programs.Each spaceflight system through 2015 had relied on expendable boosters to begin each ascent to orbital velocity.

Advances during the 2010s in private space transport, where new competition to governmental space initiatives has emerged, have included the explicit design of landing gear into orbital booster rockets. SpaceX has initiated and funded a multimillion-dollar reusable launch system development program to pursue this objective. As part of this program, SpaceX built, and flew eight times in 2012–2013, a first-generation booster-test-vehicle with a large fixed landing gear in order to test low-altitude vehicle dynamics and control for vertical landings of a near-empty orbital first stage.A second-generation larger booster test vehicle was built with extensible landing gear. The first prototype was flown four times—with all landing attempts successful—in 2014 for low-altitude tests before being self-destructed for safety reasons on a fifth test flight due to a blocked engine sensor port.

The orbital-flight version of the SpaceX design—being flown on both Falcon 9 and Falcon Heavy launch vehicles—includes a lightweight, deployable landing gear for the booster stage: a nested, telescoping piston on an A-frame. The total span of the four carbon fiber/aluminum extensible landing legs is approximately 18 metres (60 ft), and weigh less than 2,100 kilograms (4,600 lb); the deployment system uses high-pressure Helium as the working fluid. The first test of the extensible landing gear was successfully accomplished in April 2014 on a Falcon 9 rocket returning from an orbital launch and was the first successful controlled ocean soft touchdown of a liquid-rocket-engine orbital booster.After a single successful booster recovery in 2015, and several in 2016, the recovery of SpaceX booster stages became routine by 2017. Landing legs had become an ordinary operational part of orbital spaceflight launch vehicles.

The newest launch vehicle under development at SpaceX—the Starship—has landing legs on its first stage(Super Heavy) like Falcon 9 but also has three landing legs on its reusable second stage, a first for launch vehicle second stages. The first test article—Starhopper, built in early 2019—has three fixed landing legs with replaceable shock absorbers.In order to reduce mass of the flight vehicle and the payload penalty for a reusable design, the long-term plan is for vertical landing of the "Super Heavy" reusable rocket booster stage to land directly back at the launch site on a special ground equipment that is part of the launch mount,[98] but initial testing of the large booster in 2020 is expected to occur with landing legs.


Spacecraft designed to land safely on extraterrestrial bodies such as the Moon or Mars are known as either legged landers (for example the Apollo Lunar Module) or pod landers (for example Mars Pathfinder) depending on their landing gear. Pod landers are designed to land in any orientation after which they may bounce and roll before coming to rest at which time they have to be given the correct orientation to function. The whole vehicle is enclosed in crushable material or airbags for the impacts and may have opening petals to right it.

Features for landing and movement on the surface were combined in the landing gear for the Mars Science Laboratory.

For landing on low-gravity bodies landing gear may include hold-down thrusters, harpoon anchors and foot-pad screws, all of which were incorpoated in the design of comet-lander Philae for redundancy.They did not function properly as a result of which the lander bounced.


The empennage, also known as the tail or tail assembly, is a structure at the rear of an aircraft that provides stability during flight, in a way similar to the feathers on an arrow.The term derives from the French language word empenner which means "to feather an arrow".Most aircraft feature an empennage incorporating vertical and horizontal stabilising surfaces which stabilise the flight dynamics of yaw and pitch,as well as housing control surfaces.

In spite of effective control surfaces, many early aircraft that lacked a stabilising empennage were virtually unflyable. Even so-called "tailless aircraft" usually have a tail fin (usually a vertical stabiliser). Heavier-than-air aircraft without any kind of empennage (such as the Northrop B-2) are rare.


Structurally, the empennage consists of the entire tail assembly, including the tailfin, the tailplane and the part of the fuselage to which these are attached.On an airliner this would be all the flying and control surfaces behind the rear pressure bulkhead.

The front (usually fixed) section of the tailplane is called the tailplane or horizontal stabiliser and is used to provide pitch stability. The rear section is called the elevator, and is usually hinged to the horizontal stabiliser. The elevator is a movable aerofoil that controls changes in pitch, the up-and-down motion of the aircraft's nose. Some aircraft employ an all-moving stabiliser and elevators in one unit, known as a stabilator or "full-flying stabiliser".

The vertical tail structure (or fin) has a fixed front section called the vertical stabiliser, used to restrict side-to-side motion of the aircraft (yawing). The rear section of the vertical fin is the rudders, a movable aerofoil that is used to turn the aircraft's nose to one side or the other. When used in combination with the ailerons, the result is a banking turn, often referred to as a "coordinated turn".

Some aircraft are fitted with a tail assembly that is hinged to pivot in two axes forward of the fin and stabiliser, in an arrangement referred to as a movable tail. The entire empennage is rotated vertically to actuate the horizontal stabiliser, and sideways to actuate the fin.

The aircraft's cockpit voice recorder, flight data recorder and emergency locator transmitter (ELT) are often located in the empennage, because the aft of the aircraft provides better protection for these in most aircraft crashes.


In some aircraft trim devices are provided to eliminate the need for the pilot to maintain constant pressure on the elevator or rudder controls.

The trim device may be:

a trim tab on the rear of the elevators or rudder which act to change the aerodynamic load on the surface. Usually controlled by a cockpit wheel or crank.
an adjustable stabiliser into which the stabiliser may be hinged at its spar and adjustably jacked a few degrees in incidence either up or down. Usually controlled by a cockpit crank.
a bungee trim system which uses a spring to provide an adjustable preload in the controls. Usually controlled by a cockpit lever.
an anti-servo tab used to trim some elevators and stabilators as well as increased control force feel. Usually controlled by a cockpit wheel or crank.
a servo tab used to move the main control surface, as well as act as a trim tab. Usually controlled by a cockpit wheel or crank.
Multi-engined aircraft often have trim tabs on the rudder to reduce the pilot effort required to keep the aircraft straight in situations of asymmetrical thrust, such as single engine operations.

Tail configurations

Aircraft empennage designs may be classified broadly according to the fin and tailplane configurations.

The overall shapes of individual tail surfaces (tailplane planforms, fin profiles) are similar to wing planforms.


The tailplane comprises the tail-mounted fixed horizontal stabiliser and movable elevator. Besides its planform, it is characterised by:

Number of tailplanes - from 0 (tailless or canard) to 3 (Roe triplane)
Location of tailplane - mounted high, mid or low on the fuselage, fin or tail booms.
Fixed stabiliser and movable elevator surfaces, or a single combined stabilator or flying tail.(General Dynamics F-111 Aardvark)
Some locations have been given special names:

Cruciform tail - The horizontal stabilisers are placed midway up the vertical stabiliser, giving the appearance of a cross when viewed from the front. Cruciform tails are often used to keep the horizontal stabilisers out of the engine wake, while avoiding many of the disadvantages of a T-tail. Examples include the Hawker Sea Hawk and Douglas A-4 Skyhawk.
T-tail - The horizontal stabiliser is mounted on top of the fin, creating a "T" shape when viewed from the front. T-tails keep the stabilisers out of the engine wake, and give better pitch control. T-tails have a good glide ratio, and are more efficient on low speed aircraft. However, the T-tail has several disadvantages. It is more likely to enter a deep stall, and is more difficult to recover from a spin. For this reason a small secondary stabiliser or tail-let may be fitted lower down where it will be in free air when the aircraft is stalled.A T-tail must be stronger, and therefore heavier than a conventional tail. T-tails also tend to have a larger radar cross section. Examples include the Gloster Javelin and McDonnell Douglas DC-9.


The fin comprises the fixed vertical stabiliser and rudder. Besides its profile, it is characterised by:

Number of fins - usually one or two.
Location of fins - on the fuselage (over or under), tailplane, tail booms or wings
Twin fins may be mounted at various points:

Twin tail A twin tail, also called an H-tail, consists of two small vertical stabilisers on either side of the horizontal stabiliser. Examples include the Antonov An-225 Mriya, B-25 Mitchell, Avro Lancaster, and ERCO Ercoupe.
Twin boom A twin boom has two fuselages or booms, with a vertical stabiliser on each, and a horizontal stabiliser between them. Examples include the P-38 Lightning, de Havilland Vampire, Sadler Vampire, and Edgley Optica.
Wing mounted midwing as on the F7U Cutlass or on the wing tips as on the Handley Page Manx and Rutan Long-EZ

Unusual fin configurations include:

No fin - as on the McDonnell Douglas X-36. This configuration is sometimes incorrectly referred to as "tailless".
Multiple fins - examples include the Lockheed Constellation (three), Bellanca 14-13 (three), and the Northrop Grumman E-2 Hawkeye (four).
Ventral fin - underneath the fuselage. Often used in addition to a conventional fin as on the (North American X-15 and Dornier Do 335).

V, Y and X tails

An alternative to the fin-and-tailplane approach is provided by the V-tail and X-tail designs. Here, the tail surfaces are set at diagonal angles, with each surface contributing to both pitch and yaw. The control surfaces, sometimes called ruddervators, act differentially to provide yaw control (in place of the rudder) and act together to provide pitch control (in place of the elevator).

V tail: A V-tail can be lighter than a conventional tail in some situations and produce less drag, as on the Fouga Magister trainer, Northrop Grumman RQ-4 Global Hawk RPV and X-37 spacecraft. A V-tail may also have a smaller radar signature. Other aircraft featuring a V-tail include the Beechcraft Model 35 Bonanza, and Davis DA-2. A slight modification to the V-tail can be found on the Waiex and Monnett Moni called a Y-tail.
Inverted V tail:The unmanned Predator uses an inverted V-tail as do the Lazair and Mini-IMP.
Y tail: A V-tail with an added lower vertical fin (generally used to protect an aft propeller), as LearAvia Lear Fan
X tail: The Lockheed XFV and Convair XFY Pogo both featured "X" tails, which were reinforced and fitted with a wheel on each surface so that the craft could sit on its tail and take off and land vertically.

Outboard Tail

An outboard tail is split in two, with each half mounted on a short boom just behind and outboard of each wing tip. It comprises outboard horizontal stabilizers (OHS) and may or may not include additional boom-mounted vertical stabilizers (fins). In this position, the tail surfaces interact constructively with the wingtip vortices and, with careful design, can significantly reduce drag to improve efficiency, without adding unduly to the structural loads on the wing.

The configuration was first developed during World War II by Richard Vogt and George Haag at Blohm & Voss. The Skoda-Kauba SL6 tested the proposed control system in 1944 and, following several design proposals, an order was received for the Blohm & Voss P 215 just weeks before the war ended.The outboard tail reappeared on the Scaled Composites SpaceShipOne in 2003 and SpaceShipTwo in 2010.

Tailless Aircraft

A tailless aircraft (often tail-less) traditionally has all its horizontal control surfaces on its main wing surface. It has no horizontal stabiliser - either tailplane or canard foreplane (nor does it have a second wing in tandem arrangement). A 'tailless' type usually still has a vertical stabilising fin (vertical stabiliser) and control surface (rudder). However, NASA adopted the 'tailless' description for the novel X-36 research aircraft which has a canard foreplane but no vertical fin.

The most successful tailless configuration has been the tailless delta, especially for combat aircraft.

- WİNG - 

A wing is a type of fin that produces lift, while moving through air or some other fluid. As such, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.

Lifting structures used in water, include various foils, such as hydrofoils. Hydrodynamics is the governing science, rather than aerodynamics. Applications of underwater foils occur in hydroplanes, sailboats and submarines.

Etymology And Usage

For many centuries, the word "wing", from the Old Norse vængr, referred mainly to the foremost limbs of birds (in addition to the architectural aisle). But in recent centuries the word's meaning has extended to include lift producing appendages of insects, bats, pterosaurs, boomerangs, some sail boats and aircraft, or the inverted airfoil on a race car that generates a downward force to increase traction.


The design and analysis of the wings of aircraft is one of the principal applications of the science of aerodynamics, which is a branch of fluid mechanics. In principle, the properties of the airflow around any moving object can be found by solving the Navier-Stokes equations of fluid dynamics. However, except for simple geometries these equations are notoriously difficult to solve and simpler equations are used.

For a wing to produce lift, it must be oriented at a suitable angle of attack. When this occurs, the wing deflects the airflow downwards as it passes the wing. Since the wing exerts a force on the air to change its direction, the air must also exert an equal and opposite force on the wing, resulting in different air pressures over the surface of the wing.A region of lower-than-normal air pressure is generated over the top surface of the wing, with a higher pressure on the bottom of the wing. These air pressure differences can be measured directly using instrumentation or can be calculated from the airspeed distribution using basic physical principles such as Bernoulli's principle, which relates changes in air speed to changes in air pressure.

It is possible to calculate lift from: the pressure differences, the different velocities of the air above and below the wing, or from the total momentum change of the deflected air. Debates over which mathematical approach is the most convenient to use can be mistaken as differences of opinion about the basic principles of flight.

Cross-Sectional Shape

An airfoil (American English) or aerofoil (British English) is the shape of a wing, blade (of a propeller, rotor, or turbine), or sail (as seen in cross-section). Wings with an asymmetrical cross section are the norm in subsonic flight. Wings with a symmetrical cross section can also generate lift by using a positive angle of attack to deflect air downward. Symmetrical airfoils have higher stalling speeds than cambered airfoils of the same wing area but are used in aerobatic aircraft as they provide practical performance whether the aircraft is upright or inverted. Another example comes from sailboats, where the sail is a thin membrane with no path-length difference between one side and the other.

For flight speeds near the speed of sound (transonic flight), airfoils with complex asymmetrical shapes are used to minimize the drastic increase in drag associated with airflow near the speed of sound.Such airfoils, called supercritical airfoils, are flat on top and curved on the bottom.

Design Features

Aircraft wings may feature some of the following:

A rounded leading edge cross-section
A sharp trailing edge cross-section
Leading-edge devices such as slats, slots, or extensions
Trailing-edge devices such as flaps or flaperons (combination of flaps and ailerons)
Winglets to keep wingtip vortices from increasing drag and decreasing lift
Dihedral, or a positive wing angle to the horizontal, increases spiral stability around the roll axis, whereas anhedral, or a negative wing angle to the horizontal, decreases spiral stability.
Aircraft wings may have various devices, such as flaps or slats that the pilot uses to modify the shape and surface area of the wing to change its operating characteristics in flight.

Ailerons (usually near the wingtips) to roll the aircraft clockwise or counterclockwise about its long axis
Spoilers on the upper surface to disrupt the lift and to provide additional traction to an aircraft that has just landed but is still moving.
Vortex generators to help prevent flow separation in transonic flow
Wing fences to keep flow attached to the wing by stopping boundary layer separation from spreading roll direction.
Folding wings allow more aircraft storage in the confined space of the hangar deck of an aircraft carrier
Variable-sweep wing or "swing wings" that allow outstretched wings during low-speed flight (i.e., take-off and landing) and swept back wings for high-speed flight (including supersonic flight), such as in the F-111 Aardvark, the F-14 Tomcat, the Panavia Tornado, the MiG-23, the MiG-27, the Tu-160 and the B-1B Lancer warplanes
Strakes to improve flight characteristics
Chine, which may blend into the wing
Droop, a high-lift device
Fairings, structures whose primary function is to produce a smooth outline and reduce drag. For example, flap track fairings
Wings may have other minor independent surfaces.

Applications And Variants

Besides fixed-wing aircraft, applications for wing shapes include:

Hang gliders, which use wings ranging from fully flexible (paragliders, gliding parachutes), flexible (framed sail wings), to rigid
Kites, which use a variety of lifting surfaces
Flying model airplanes
Helicopters, which use a rotating wing with a variable pitch angle to provide directional forces
Propellers, whose blades generate lift for propulsion.
The NASA Space Shuttle, which uses its wings only to glide during its descent to a runway. These types of aircraft are called spaceplanes.
Some racing cars, especially Formula One cars, which use upside-down wings (or airfoils) to provide greater traction at high speeds
Sailboats, which use sails as vertical wings with variable fullness and direction to move across water

In Nature

In nature, wings have evolved in insects, pterosaurs, dinosaurs (birds), and mammals (bats) as a means of locomotion. Various species of penguins and other flighted or flightless water birds such as auks, cormorants, guillemots, shearwaters, eider and scoter ducks and diving petrels are avid swimmers, and use their wings to propel through water.

Tensile Structures

In 1948, Francis Rogallo invented a kite-like tensile wing supported by inflated or rigid struts, which ushered in new possibilities for aircraft. Near in time, Domina Jalbert invented flexible un-sparred ram-air airfoiled thick wings. These two new branches of wings have been since extensively studied and applied in new branches of aircraft, especially altering the personal recreational aviation landscape.


Propulsion means to push forward or drive an object forward .The term is derived from two Latin words: pro, meaning before or forward; and pellere, meaning to drive.A propulsion system consists of a source of mechanical power, and a propulsor (means of converting this power into propulsive force).

A technological system uses an engine or motor as the power source (commonly called a powerplant), and wheels and axles, propellers, or a propulsive nozzle to generate the force. Components such as clutches or gearboxes may be needed to connect the motor to axles, wheels, or propellers.

Biological propulsion systems use an animal's muscles as the power source, and limbs such as wings, fins or legs as the propulsors.

A technological/biological system may use human, or trained animal, muscular work to power a mechanical device.

Air Propulsion

Aircraft propulsion system generally consists of an aircraft engine and some means to generate thrust, such as a propeller or a propulsive nozzle.

An aircraft propulsion system must achieve two things. First, the thrust from the propulsion system must balance the drag of the airplane when the airplane is cruising. And second, the thrust from the propulsion system must exceed the drag of the airplane for the airplane to accelerate. The greater the difference between the thrust and the drag, called the excess thrust, the faster the airplane will accelerate.

Some aircraft, like airliners and cargo planes, spend most of their life in a cruise condition. For these airplanes, excess thrust is not as important as high engine efficiency and low fuel usage. Since thrust depends on both the amount of gas moved and the velocity, we can generate high thrust by accelerating a large mass of gas by a small amount, or by accelerating a small mass of gas by a large amount. Because of the aerodynamic efficiency of propellers and fans, it is more fuel efficient to accelerate a large mass by a small amount, which is why high-bypass turbofans and turboprops are commonly used on cargo planes and airliners.

Some aircraft, like fighter planes or experimental high speed aircraft, require very high excess thrust to accelerate quickly and to overcome the high drag associated with high speeds. For these airplanes, engine efficiency is not as important as very high thrust. Modern combat aircraft usually have an afterburner added to a low bypass turbofan. Future hypersonic aircraft may use some type of ramjet or rocket propulsion


Ground propulsion is any mechanism for propelling solid bodies along the ground, usually for the purposes of . The propulsion system often consists of a combination of an engine or motor, a gearbox and wheel and axles.

Spacecraft Propulsion

Spacecraft propulsion is any method used to accelerate spacecraft and artificial . There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the back/rear of the vehicle at very high speed through a supersonic de Laval nozzle. This sort of engine is called a rocket engine.

All current spacecraft use chemical rockets (bipropellant or solid-fuel) for launch, though some (such as the Pegasus rocket and SpaceShipOne) air-breathing engines on their first stage. Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control. Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north-south stationkeeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall effect thrusters (two different types of electric propulsion) to great success.

Aircraft Design Process

The aircraft design process is the engineering design process by which aircraft are designed. These depend on many factors such as customer and manufacturer demand, safety protocols, physical and economic constraints etc. For some types of aircraft the design process is regulated by national airworthiness authorities. This article deals with powered aircraft such as airplanes and helicopter designs.

Aircraft design is a compromise between many competing factors and constraints and accounts for existing designs and market requirements to produce the best aircraft.

Design Constraints


The design process starts with the aircraft's intended purpose. Commercial airliners are designed for carrying a passenger or cargo payload, long range and greater fuel efficiency where as fighter jets are designed to perform high speed maneuvers and provide close support to ground troops. Some aircraft have specific missions, for instance, amphibious airplanes have a unique design that allows them to operate from both land and water, some fighters, like the Harrier Jump Jet, VTOL (Vertical Take-off and Landing) ability, helicopters have the ability to hover over an area for a period of time.

The purpose may be to fit a specific requirement, e.g. as in the historical case of a British Air Ministry specification, or fill a perceived "gap in the market"; that is, a class or design of aircraft which does not yet exist, but for which there would be significant demand.

Aircraft Regulations

Another important factor that influences the design of the aircraft are the regulations put forth by national airworthiness authorities.

Airports may also impose limits on aircraft, for instance, the maximum wingspan allowed for a conventional aircraft is 80 m to prevent collisions between aircraft while taxiing.

Financial Factors And Market

Budget limitations, market requirements and competition set constraints on the design process and comprise the non-technical influences on aircraft design along with environmental factors. Competition leads to companies striving for better efficiency in the design without compromising performance and incorporating new techniques and technology.

In the 1950s and ’60s, unattainable project goals were regularly set, but then abandoned, whereas today troubled programs like the Boeing 787 and the Lockheed Martin F-35 have proven far more costly and complex to develop than expected. More advanced and integrated design tools have been developed. Model-based systems engineering predicts potentially problematic interactions, while computational analysis and optimization allows designers to explore more options early in the process. Increasing automation in engineering and manufacturing allows faster and cheaper development. Technology advances from materials to manufacturing enable more complex design variations like multifunction parts. Once impossible to design or construct, these can now be 3D printed, but they have yet to prove their utility in applications like the Northrop Grumman B-21 or the re-engined A320neo. Airbus and Boeing also recognize the economic limits, that the next airliner generation cannot cost more than the previous ones did.

Environmental Factors

An increase in the number of aircraft also means greater carbon emissions. Environmental scientists have voiced concern over the main kinds of pollution associated with aircraft, mainly noise and emissions. Aircraft engines have been historically notorious for creating noise pollution and the expansion of airways over already congested and polluted cities have drawn heavy criticism, making it necessary to have environmental policies for aircraft noise.Noise also arises from the airframe, where the airflow directions are changed.Improved noise regulations have forced designers to create quieter engines and airframes.Emissions from aircraft include particulates, carbon dioxide (CO2 ), Sulfur dioxide (SO2 ), Carbon monoxide (CO), various oxides of nitrates and unburnt hydrocarbons. To combat the pollution, ICAO set recommendations in 1981 to control aircraft emissions.Newer, environmentally friendly fuels have been developed and the use of recyclable materials in manufacturing have helped reduce the ecological impact due to aircraft. Environmental limitations also affect airfield compatibility. Airports around the world have been built to suit the topography of the particular region. Space limitations, pavement design, runway end safety areas and the unique location of airport are some of the airport factors that influence aircraft design. However changes in aircraft design also influence airfield design as well, for instance, the recent introduction of new large aircraft (NLAs) such as the superjumbo , have led to airports worldwide redesigning their facilities to accommodate its large size and service requirements.


The high speeds, fuel tanks, atmospheric conditions at cruise altitudes, natural hazards (thunderstorms, hail and bird strikes) and human error are some of the many hazards that pose a threat to air travel.

Airworthiness is the standard by which aircraft are determined fit to fly.The responsibility for airworthiness lies with national aviation regulatory bodies, manufacturers, as well as owners and operators.

The International Civil Aviation Organization sets international standards and recommended practices for national authorities to base their regulations on The national regulatory authorities set standards for airworthiness, issue certificates to manufacturers and operators and the standards of personnel training.Every country has its own regulatory body such as the Federal Aviation Authority in USA, DGCA (Directorate General of Civil Aviation).

The aircraft manufacturer makes sure that the aircraft meets existing design standards, defines the operating limitations and maintenance schedules and provides support and maintenance throughout the operational life of the aircraft.The aviation operators include the passenger and cargo airliners, air forces and owners of private aircraft.They agree to comply with the regulations set by the regulatory bodies, understand the limitations of the aircraft as specified by the manufacturer, report defects and assist the manufacturers in keeping up the airworthiness standards.

Most of the design criticisms these days are built on crashworthiness. Even with the greatest attention to airworthiness, accidents still occur. Crashworthiness is the qualitative evaluation of how aircraft survive an accident. The main objective is to protect the passengers or valuable cargo from the damage caused by an accident. In the case of airliners the stressed skin of the pressurized fuselage provides this feature, but in the event of a nose or tail impact, large bending moments build all the way through the fuselage, causing fractures in the shell, causing the fuselage to break up into smaller sections.So the passenger aircraft are designed in such a way that seating arrangements are away from areas likely to be intruded in an accident, such as near a propeller, engine nacelle undercarriage etc.The interior of the cabin is also fitted with safety features such as oxygen masks that drop down in the event of loss of cabin pressure, lockable luggage compartments, safety belts, lifejackets, emergency doors and luminous floor strips. Aircraft are sometimes designed with emergency water landing in mind, for instance the Airbus A330 has a 'ditching' switch that closes valves and openings beneath the aircraft slowing the ingress of water.

Design Optimization

Aircraft designers normally rough-out the initial design with consideration of all the constraints on their design. Historically design teams used to be small, usually headed by a Chief Designer who knows all the design requirements and objectives and coordinated the team accordingly. As time progressed, the complexity of military and airline aircraft also grew. Modern military and airline design projects are of such a large scale that every design aspect is tackled by different teams and then brought together. In general aviation a large number of light aircraft are designed and built by amateur hobbyists and enthusiasts.

Computer-Aided Design Of Aircraft

In the early years of aircraft design, designers generally used analytical theory to do the various engineering calculations that go into the design process along with a lot of experimentation. These calculations were labour-intensive and time-consuming. In the 1940s, several engineers started looking for ways to automate and simplify the calculation process and many relations and semi-empirical formulas were developed. Even after simplification, the calculations continued to be extensive. With the invention of the computer, engineers realized that a majority of the calculations could be automated, but the lack of design visualization and the huge amount of experimentation involved kept the fieldof aircraft design stagnant. With the rise of programming languages, engineers could now write programs that were tailored to design an aircraft. Originally this was done with mainframe computers and used low-level programming languages that required the user to be fluent in the language and know the architecture of the computer. With the introduction of personal computers, design programs began employing a more user-friendly approach.

Design Aspects

The main aspects of aircraft design are:

All aircraft designs involve compromises of these factors to achieve the design mission.

Wing Design

The wing of a fixed-wing aircraft provides the lift necessary for flight. Wing geometry affects every aspect of an aircraft's flight. The wing area will usually be dictated by the desired stalling speed but the overall shape of the planform and other detail aspects may be influenced by wing layout factors.The wing can be mounted to the fuselage in high, low and middle positions. The wing design depends on many parameters such as selection of aspect ratio, taper ratio, sweepback angle, thickness ratio, section profile, .The cross-sectional shape of the wing is its airfoil.The construction of the wing starts with the rib which defines the airfoil shape. Ribs can be made of wood, metal, plastic or even composites.

The wing must be designed and tested to ensure it can withstand the maximum loads imposed by maneuvering, and by atmospheric gusts.


The fuselage is the part of the aircraft that contains the cockpit, passenger cabin or cargo hold.


Aircraft propulsion may be achieved by specially designed aircraft engines, adapted auto, motorcycle or snowmobile engines, electric engines or even human muscle power. The main parameters of engine design are:

Maximum engine thrust available
Fuel consumption
Engine mass
Engine geometry
The thrust provided by the engine must balance the drag at cruise speed and be greater than the drag to allow acceleration. The engine requirement varies with the type of aircraft. For instance, commercial airliners spend more time in cruise speed and need more engine efficiency. High-performance fighter jets need very high acceleration and therefore have very high thrust requirements.


The weight of the aircraft is the common factor that links all aspects of aircraft design such as aerodynamics, structure, and propulsion, all together. An aircraft's weight is derived from various factors such as empty weight, payload, useful load, etc. The various weights are used to then calculate the center of mass of the entire aircraft.The center of mass must fit within the established limits set by the manufacturer.


The aircraft structure focuses not only on strength, aeroelasticity, durability, damage tolerance, stability, but also on fail-safety, corrosion resistance, maintainability and ease of manufacturing. The structure must be able to withstand the stresses caused by cabin pressurization, if fitted, turbulence and engine or rotor vibrations.

- Design Process And Simulation -

 The design of any aircraft starts out in three phases

Conceptual Design

Aircraft conceptual design involves sketching a variety of possible configurations that meet the required design specifications. By drawing a set of configurations, designers seek to reach the design configuration that satisfactorily meets all requirements as well as go hand in hand with factors such as aerodynamics, propulsion, flight performance, structural and control systems.This is called design optimization. Fundamental aspects such as fuselage shape, wing configuration and location, engine size and type are all determined at this stage. Constraints to design like those mentioned above are all taken into account at this stage as well. The final product is a conceptual layout of the aircraft configuration on paper or computer screen, to be reviewed by engineers and other designers.

Preliminary Design Phase

The design configuration arrived at in the conceptual design phase is then tweaked and remodeled to fit into the design parameters. In this phase, wind tunnel testing and computational fluid dynamic calculations of the flow field around the aircraft are done. Major structural and control analysis is also carried out in this phase. Aerodynamic flaws and structural instabilities if any are corrected and the final design is drawn and finalized. Then after the finalization of the design lies the key decision with the manufacturer or individual designing it whether to actually go ahead with the production of the aircraft.At this point several designs, though perfectly capable of flight and performance, might have been opted out of production due to their being economically nonviable

.Detail Design Phase

This phase simply deals with the fabrication aspect of the aircraft to be manufactured. It determines the number, design and location of ribs, spars, sections and other structural elements.All aerodynamic, structural, propulsion, control and performance aspects have already been covered in the preliminary design phase and only the manufacturing remains. Flight simulators for aircraft are also developed at this stage.


Some commercial aircraft have experienced significant schedule delays and cost overruns in the development phase. Examples of this include the Boeing 787 Dreamliner with a delay of 4 years with massive cost overruns, the Boeing 747-8 with a two-year delay, the Airbus A380 with a two-year delay and US$6.1 billion in cost overruns, the Airbus A350 with delays and cost overruns, the Bombardier C Series, Global 7000 and 8000, the Comac C919 with a four-year delay and the Mitsubishi Regional Jet, which was delayed by four years and ended up with empty weight issues.

Program Development

An existing aircraft program can be developed for performance and economy gains by stretching the fuselage, MTOW, enhancing the aerodynamics, installing new engines, new wings or new avionics. For a 9,100 nmi long range at Mach 0.8/FL360, a 10% lower TSFC saves 13% of fuel, a 10% L/D increase saves 12%, a 10% lower OEW saves 6% and all combined saves 28%.


Aerodynamics, Greek ἀήρ aero (air) + δυναμική (dynamics), is the study of motion of,particularly as interaction with a solid object, such as an.It is a sub-field of fluid dynamics and gas dynamics, and many aspects of aerodynamics theory are common to these fields. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891.Since then, the use of aerodynamics through analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.


Modern aerodynamics only dates back to the seventeenth century, but aerodynamic forces have been harnessed by humans for thousands of years in sailboats and windmills,and images and stories of flight appear throughout recorded history,such as the Ancient Greek legend of Icarus and Daedalus.Fundamental concepts of continuum, drag, and pressure gradients appear in the work of Aristotle and Archimedes.

In 1726, Sir Isaac Newton became the first person to develop a theory of air resistance,making him one of the first aerodynamicists. Dutch-Swiss mathematician Daniel Bernoulli followed in 1738 with Hydrodynamica in which he described a fundamental relationship between pressure, density, and flow velocity for incompressible flow known today as Bernoulli's principle, which provides one method for calculating aerodynamic lift.In 1757, Leonhard Euler published the more general Euler equations which could be applied to both compressible and incompressible flows. The Euler equations were extended to incorporate the effects of viscosity in the first half of the 1800s, resulting in the Navier–Stokes equations.The Navier-Stokes equations are data-ad-format="auto" data-ad-slot="5122244567" data-full-width-responsive="true" style="display: block;">
the most general governing equations of fluid flow and but are difficult to solve for the flow around all but the simplest of shapes.

In 1799, Sir George Cayley became the first person to identify the four aerodynamic forces of flight (weight, lift, drag, and thrust), as well as the relationships between them, and in doing so outlined the path toward achieving heavier-than-air flight for the next century. In 1871, Francis Herbert Wenham constructed the first wind tunnel, allowing precise measurements of aerodynamic forces. Drag theories were developed by Jean le Rond d'Alembert,Gustav Kirchhoff,and Lord Rayleigh.In 1889, Charles Renard, a French aeronautical engineer, became the first person to reasonably predict the power needed for sustained flight.Otto Lilienthal, the first person to become highly successful with glider flights, was also the first to propose thin, curved airfoils that would produce high lift and low drag. Building on these developments as well as research carried out in their own wind tunnel, the Wright brothers flew the first powered airplane on December 17, 1903.

During the time of the first flights, Frederick W. Lanchester,Martin Kutta, and Nikolai Zhukovsky independently created theories that connected circulation of a fluid flow to lift. Kutta and Zhukovsky went on to develop a two-dimensional wing theory. Expanding upon the work of Lanchester, Ludwig Prandtl is credited with developing the mathematics behind thin-airfoil and lifting-line theories as well as work with boundary layers.

As aircraft speed increased, designers began to encounter challenges associated with air compressibility at speeds near or greater than the speed of sound. The differences in air flows under such conditions leads to problems in aircraft control, increased drag due to shock waves, and the threat of structural failure due to aeroelastic flutter. The ratio of the flow speed to the speed of sound was named the Mach number after Ernst Mach who was one of the first to investigate the properties of supersonic flow. William John Macquorn Rankine and Pierre Henri Hugoniot independently developed the theory for flow properties before and after a shock wave, while Jakob Ackeret led the initial work of calculating the lift and drag of supersonic airfoils.Theodore von Kármán and Hugh Latimer Dryden introduced the term transonic to describe flow speeds around Mach 1 where drag increases rapidly. This rapid increase in drag led aerodynamicists and aviators to disagree on whether supersonic flight was achievable until the sound barrier was broken for the first time in 1947 using the Bell X-1 aircraft.

By the time the sound barrier was broken, aerodynamicists' understanding of the subsonic and low supersonic flow had matured. The Cold War prompted the design of an ever-evolving line of high performance aircraft. Computational fluid dynamics began as an effort to solve for flow properties around complex objects and has rapidly grown to the point where entire aircraft can be designed using computer software, with wind-tunnel tests followed by flight tests to confirm the computer predictions. Understanding of supersonic and hypersonic aerodynamics has matured since the 1960s, and the goals of aerodynamicists have shifted from the behavior of fluid flow to the engineering of a vehicle such that it interacts predictably with the fluid flow. Designing aircraft for supersonic and hypersonic conditions, as well as the desire to improve the aerodynamic efficiency of current aircraft and propulsion systems, continues to motivate new research in aerodynamics, while work continues to be done on important problems in basic aerodynamic theory related to flow turbulence and the existence and uniqueness of analytical solutions to the Navier-Stokes equations.

Fundamental Concepts

Understanding the motion of air around an object (often called a flow field) enables the calculation of forces and moments acting on the object. In many aerodynamics problems, the forces of interest are the fundamental forces of flight: lift, drag, thrust, and weight. Of these, lift and drag are aerodynamic forces, i.e. forces due to air flow over a solid body. Calculation of these quantities is often founded upon the assumption that the flow field behaves as a continuum. Continuum flow fields are characterized by properties such as flow velocity, pressure, density, and temperature, which may be functions of position and time. These properties may be directly or indirectly measured in aerodynamics experiments or calculated starting with the equations for conservation of mass, momentum, and energy in air flows. Density, flow velocity, and an additional property, viscosity, are used to classify flow fields.

Flow Classification

Flow velocity is used to classify flows according to speed regime. Subsonic flows are flow fields in which the air speed field is always below the local speed of sound. Transonic flows include both regions of subsonic flow and regions in which the local flow speed is greater than the local speed of sound. Supersonic flows are defined to be flows in which the flow speed is greater than the speed of sound everywhere. A fourth classification, hypersonic flow, refers to flows where the flow speed is much greater than the speed of sound. Aerodynamicists disagree on the precise definition of hypersonic flow.

Compressible flow accounts for varying density within the flow. Subsonic flows are often idealized as incompressible, i.e. the density is assumed to be constant. Transonic and supersonic flows are compressible, and calculations that neglect the changes of density in these flow fields will yield inaccurate results.

Viscosity is associated with the frictional forces in a flow. In some flow fields, viscous effects are very small, and approximate solutions may safely neglect viscous effects. These approximations are called inviscid flows. Flows for which viscosity is not neglected are called viscous flows. Finally, aerodynamic problems may also be classified by the flow environment. External aerodynamics is the study of flow around solid objects of various shapes (e.g. around an airplane wing), while internal aerodynamics is the study of flow through passages inside solid objects (e.g. through a jet engine).

Continuum Assumption

Unlike liquids and solids, gases are composed of discrete molecules which occupy only a small fraction of the volume filled by the gas. On a molecular level, flow fields are made up of the collisions of many individual of gas molecules between themselves and with solid surfaces. However, in most aerodynamics applications, the discrete molecular nature of gases is ignored, and the flow field is assumed to behave as a continuum. This assumption allows fluid properties such as density and flow velocity to be defined everywhere within the flow.

The validity of the continuum assumption is dependent on the density of the gas and the application in question. For the continuum assumption to be valid, the mean free path length must be much smaller than the length scale of the application in question. For example, many aerodynamics applications deal with aircraft flying in atmospheric conditions, where the mean free path length is on the order of micrometers and where the body is orders of magnitude larger. In these cases, the length scale of the aircraft ranges from a few meters to a few tens of meters, which is much larger than the mean free path length. For such applications, the continuum assumption is reasonable. The continuum assumption is less valid for extremely low-density flows, such as those encountered by vehicles at very high altitudes (e.g. 300,000 ft/90 km) or satellites in Low Earth orbit. In those cases, statistical mechanics is a more accurate method of solving the problem than is continuum aerodynamics. The Knudsen number can be used to guide the choice between statistical mechanics and the continuous formulation of aerodynamics.

Conservation Laws

The assumption of a fluid continuum allows problems in aerodynamics to be solved using fluid dynamics conservation laws. Three conservation principles are used:

Conservation of mass
In fluid dynamics, the mathematical formulation of this principle is known as the mass continuity equation, which requires that mass is neither created nor destroyed within a flow of interest.
Conservation of momentum
In fluid dynamics, the mathematical formulation of this principle can be considered an application of Newton's Second Law. Momentum within a flow is only changed by the work performed on the system by external forces, which may include both surface forces, such as viscous (frictional) forces, and body forces, such as weight. The momentum conservation principle may be expressed as either a vector equation or separated into a set of three scalar equations (x,y,z components). In its most complete form, the momentum conservation equations are known as the Navier-Stokes equations. The Navier-Stokes equations have no known analytical solution and are solved in modern aerodynamics using computational techniques. Because of the computational cost of solving these complex equations, simplified expressions of momentum conservation may be appropriate for specific applications. The Euler equations are a set of momentum conservation equations which neglect viscous forces and may be used in cases where the effect of viscous forces is expected to be small. Additionally, Bernoulli's equation is a solution to the momentum conservation equation of an inviscid flow that neglects gravity.
Conservation of energy
The energy conservation equation states that energy is neither created nor destroyed within a flow, and that any addition or subtraction of energy to a volume in the flow is caused by the fluid flow, by heat transfer, or by work into and out of the region of interest.
The ideal gas law or another such equation of state is often used in conjunction with these equations to form a determined system that allows the solution for the unknown variables.

Branches Of Aerodynamics

Aerodynamic problems are classified by the flow environment or properties of the flow, including flow speed, compressibility, and viscosity. External aerodynamics is the study of flow around solid objects of various shapes. Evaluating the lift and drag on an airplane or the shock waves that form in front of the nose of a rocket are examples of external aerodynamics. Internal aerodynamics is the study of flow through passages in solid objects. For instance, internal aerodynamics encompasses the study of the airflow through a jet engine or through an air conditioning pipe.

Aerodynamic problems can also be classified according to whether the flow speed is below, near or above the speed of sound. A problem is called subsonic if all the speeds in the problem are less than the speed of sound, transonic if speeds both below and above the speed of sound are present (normally when the characteristic speed is approximately the speed of sound), supersonic when the characteristic flow speed is greater than the speed of sound, and hypersonic when the flow speed is much greater than the speed of sound. Aerodynamicists disagree over the precise definition of hypersonic flow; a rough definition considers flows with Mach numbers above 5 to be hypersonic.

The influence of viscosity on the flow dictates a third classification. Some problems may encounter only very small viscous effects, in which case viscosity can be considered to be negligible. The approximations to these problems are called inviscid flows. Flows for which viscosity cannot be neglected are called viscous flows.

Incompressible Aerodynamics

An incompressible flow is a flow in which density is constant in both time and space. Although all real fluids are compressible, a flow is often approximated as incompressible if the effect of the density changes cause only small changes to the calculated results. This is more likely to be true when the flow speeds are significantly lower than the speed of sound. Effects of compressibility are more significant at speeds close to or above the speed of sound. The Mach number is used to evaluate whether the incompressibility can be assumed, otherwise the effects of compressibility must be included.

Subsonic Flow

Subsonic (or low-speed) aerodynamics describes fluid motion in flows which are much lower than the speed of sound everywhere in the flow. There are several branches of subsonic flow but one special case arises when the flow is inviscid, incompressible and irrotational. This case is called potential flow and allows the differential equations that describe the flow to be a simplified version of the equations of fluid dynamics, thus making available to the aerodynamicist a range of quick and easy solutions.

In solving a subsonic problem, one decision to be made by the aerodynamicist is whether to incorporate the effects of compressibility. Compressibility is a description of the amount of change of density in the flow. When the effects of compressibility on the solution are small, the assumption that density is constant may be made. The problem is then an incompressible low-speed aerodynamics problem. When the density is allowed to vary, the flow is called compressible. In air, compressibility effects are usually ignored when the Mach number in the flow does not exceed 0.3 (about 335 feet (102 m) per second or 228 miles (366 km) per hour at 60 °F (16 °C)). Above Mach 0.3, the problem flow should be described using compressible aerodynamics.

Compressible Aerodynamics

According to the theory of aerodynamics, a flow is considered to be compressible if the density changes along a streamline. This means that – unlike incompressible flow – changes in density are considered. In general, this is the case where the Mach number in part or all of the flow exceeds 0.3. The Mach 0.3 value is rather arbitrary, but it is used because gas flows with a Mach number below that value demonstrate changes in density of less than 5%. Furthermore, that maximum 5% density change occurs at the stagnation point (the point on the object where flow speed is zero), while the density changes around the rest of the object will be significantly lower. Transonic, supersonic, and hypersonic flows are all compressible flows.

Transonic Flow

The term Transonic refers to a range of flow velocities just below and above the local speed of sound (generally taken as Mach 0.8–1.2). It is defined as the range of speeds between the critical Mach number, when some parts of the airflow over an aircraft become supersonic, and a higher speed, typically near Mach 1.2, when all of the airflow is supersonic. Between these speeds, some of the airflow is supersonic, while some of the airflow is not supersonic.

Supersonic Flow

upersonic aerodynamic problems are those involving flow speeds greater than the speed of sound. Calculating the lift on the Concorde during cruise can be an example of a supersonic aerodynamic problem.

Supersonic flow behaves very differently from subsonic flow. Fluids react to differences in pressure; pressure changes are how a fluid is "told" to respond to its environment. Therefore, since sound is, in fact, an infinitesimal pressure difference propagating through a fluid, the speed of sound in that fluid can be considered the fastest speed that "information" can travel in the flow. This difference most obviously manifests itself in the case of a fluid striking an object. In front of that object, the fluid builds up a stagnation pressure as impact with the object brings the moving fluid to rest. In fluid traveling at subsonic speed, this pressure disturbance can propagate upstream, changing the flow pattern ahead of the object and giving the impression that the fluid "knows" the object is there by seemingly adjusting its movement and is flowing around it. In a supersonic flow, however, the pressure disturbance cannot propagate upstream. Thus, when the fluid finally reaches the object it strikes it and the fluid is forced to change its properties – temperature, density, pressure, and Mach number—in an extremely violent and irreversible fashion called a shock wave. The presence of shock waves,
along with the compressibility effects of high-flow velocity (see Reynolds number) fluids, is the central difference between the supersonic and subsonic aerodynamics regimes.

Hypersonic Flow

n aerodynamics, hypersonic speeds are speeds that are highly supersonic. In the 1970s, the term generally came to refer to speeds of Mach 5 (5 times the speed of sound) and above. The hypersonic regime is a subset of the supersonic regime. Hypersonic flow is characterized by high temperature flow behind a shock wave, viscous interaction, and chemical dissociation of gas.

Associated Terminology

The incompressible and compressible flow regimes produce many associated phenomena, such as boundary layers and turbulence.

Boundary Layers

The concept of a boundary layer is important in many problems in aerodynamics. The viscosity and fluid friction in the air is approximated as being significant only in this thin layer. This assumption makes the description of such aerodynamics much more tractable mathematically.


In aerodynamics, turbulence is characterized by chaotic property changes in the flow. These include low momentum diffusion, high momentum convection, and rapid variation of pressure and flow velocity in space and time. Flow that is not turbulent is called laminar flow.

Post a Comment

Note: Only a member of this blog may post a comment.

favourite category


Whatsapp Button works on Mobile Device only