Saturday, March 28, 2020



Aircraft carrier is a warship that serves as a seagoing airbase, equipped with a full-length flight deck and facilities for carrying, arming, deploying, and recovering aircraft.Typically, it is the capital ship of a fleet, as it allows a naval force to project air power worldwide without depending on local bases for staging aircraft operations. Carriers have evolved since their inception in the early twentieth century from wooden vessels used to deploy balloons to nuclear-powered warships that carry numerous fighters, strike aircraft, helicopters, and other types of aircraft. While heavier aircraft such as fixed-wing gunships and bombers have been launched from aircraft carriers, it is currently not possible to land them. By its diplomatic and tactical power, its mobility, its autonomy and the variety of its means, the aircraft carrier is often the centerpiece of modern combat fleets. Tactically or even strategically, it replaced the battleship in the role of flagship of a fleet. One of its great advantages is that, by sailing in international waters, it does not interfere with any territorial sovereignty and thus obviates the need for overflight authorizations from third-party countries, reduces the times and transit distances of aircraft and therefore significantly increase the time of availability on the combat zone.

There is no single definition of an "aircraft carrier",and modern navies use several variants of the type. These variants are sometimes categorized as sub-types of aircraft carriers,and sometimes as distinct types of naval aviation-capable ships.Aircraft carriers may be classified according to the type of aircraft they carry and their operational assignments. Admiral Sir Mark Stanhope, RN, former First Sea Lord (head) of the Royal Navy, has said, "To put it simply, countries that aspire to strategic international influence have aircraft carriers."Henry Kissinger, while United States Secretary of State, also said: "An aircraft carrier is 100,000 tons of diplomacy."

As of March 2020, there are 44 active aircraft carriers in the world operated by fourteen navies. The United States Navy has 11 large nuclear-powered fleet carriers—carrying around 80 fighter jets each—the largest carriers in the world; the total combined deck space is over twice that of all other nations combined.As well as the aircraft carrier fleet, the U.S. Navy has nine amphibious assault ships used primarily for helicopters, although these also carry up to 20 vertical or short take-off and landing (V/STOL) fighter jets and are similar in size to medium-sized fleet carriers. The United Kingdom and China each operate two aircraft carriers. France, India, and Russia each operate a single medium-size carrier with a capacity of 30 to 60 fighter jets. Italy operates two light fleet carriers and Spain operates one. Helicopter carriers are operated by Japan (4), France (3), Australia (2), Egypt (2), Brazil (1), South Korea (1), and Thailand (1). Future aircraft carriers are under construction or in planning by Brazil, China, India, Russia and the US.


 General Features

Speed is an important asset for aircraft carriers, as they need to be deployed anywhere in the world quickly, and must be fast enough to evade detection and targeting by enemy forces. To avoid nuclear submarines, they should be faster than 30 knots.
Aircraft carriers are among the largest warships, as they need a lot of deck room.
Aircraft carrier must be able to perform an increasingly diverse mission sets. Diplomacy, power projection, quick crisis response force, land attack from the sea, sea base for helicopter and amphibious assault forces, Anti-Surface Warfare (ASUW), Defensive Counter Air (DCA), and Humanitarian Aid Disaster Relief (HADR) are some of the missions the aircraft carrier is expected to accomplish. Traditionally an aircraft carrier is supposed to be one ship that can perform at least power projection and sea control missions.
Aircraft carrier must be able to efficiently operate an air combat group. This means it should handle fixed-wing jets as well as helicopters. This includes ships designed to support operations of short-takeoff/vertical-landing (STOVL) jets.

Basic Types

Amphibious assault ship
Anti-submarine warfare carrier
Balloon carrier and balloon tenders
Escort carrier
Fleet carrier
Flight deck cruiser
Helicopter carrier
Light aircraft carrier
Sea Control Ship
Seaplane tender and seaplane carriers
Aircraft cruiser

By Role

A fleet carrier is intended to operate with the main fleet and usually provides an offensive capability. These are the largest carriers capable of fast speeds. By comparison, escort carriers were developed to provide defense for convoys of ships. They were smaller and slower with lower numbers of aircraft carried. Most were built from mercantile hulls or, in the case of merchant aircraft carriers, were bulk cargo ships with a flight deck added on top. Light aircraft carriers were fast enough to operate with the main fleet but of smaller size with reduced aircraft capacity.

The Soviet aircraft carrier Admiral Kusnetsov was termed a heavy aircraft-carrying cruiser. This was primarily a legal construct to avoid the limitations of the Montreux Convention preventing 'aircraft carriers' transiting the Turkish Straits between the Soviet Black Sea bases and the Mediterranean. These ships, while sized in the range of large fleet carriers, were designed to deploy alone or with escorts. In addition to supporting fighter aircraft and helicopters, they provide both strong defensive weaponry and heavy offensive missiles equivalent to a guided missile cruiser.

By Configuration

Aircraft carriers today are usually divided into the following four categories based on the way that aircraft take off and land:

Catapult-assisted take-off barrier arrested-recovery (CATOBAR): these carriers generally carry the largest, heaviest, and most heavily armed aircraft, although smaller CATOBAR carriers may have other limitations (weight capacity of aircraft elevator, etc.). All CATOBAR carriers in service today are nuclear powered. Two nations currently operate carriers of this type: ten Nimitz class and one Gerald R. Ford class fleet carriers by the United States, and one medium-sized carrier by France, for a world total of twelve in service.

Short take-off barrier-arrested recovery (STOBAR): these carriers are generally limited to carrying lighter fixed-wing aircraft with more limited payloads. STOBAR carrier air wings, such as the Sukhoi Su-33 and future Mikoyan MiG-29K wings of Admiral Kuznetsov are often geared primarily towards air superiority and fleet defense roles rather than strike/power projection tasks,[citation needed] which require heavier payloads (bombs and air-to-ground missiles). Today China operate two STOBAR carriers and India and Russia each operate one carrier of this type – a total of four in service currently.

Short take-off vertical-landing (STOVL): limited to carrying STOVL aircraft. STOVL aircraft, such as the Harrier Jump Jet family and Yakovlev Yak-38 generally have limited payloads, lower performance, and high fuel consumption when compared with conventional fixed-wing aircraft; however, a new generation of STOVL aircraft, currently consisting of the F-35B, has much improved performance. The US has nine STOVL amphibious assault ships. The UK has a class of two 65,000-tonne STOVL aircraft carriers, HMS Queen Elizabeth and HMS Prince of Wales, the largest warships ever built for the Royal Navy; with one in service and the other being fitted out. Italy operates two in the light fleet role, and Spain operates one amphibious assault ship as a STOVL aircraft carrier, giving a total of fourteen STOVL carriers in active service; (Thailand has one active STOVL carrier but she no longer has any operational STOVL aircraft in inventory so is used and counted as a helicopter carrier).

Helicopter carrier: Helicopter carriers have a similar appearance to other aircraft carriers but operate only helicopters – those that mainly operate helicopters but can also operate fixed-wing aircraft are known as STOVL carriers (see above). There are currently fourteen helicopter carriers (that solely operate helicopters and not fixed-wing aircraft), operated by seven navies, in commission today. Japan has four of this type, France three, Australia two, Egypt two, and South Korea, Thailand, and Brazil have one each. In the past, some conventional carriers were converted and called commando carriers by the Royal Navy. Some helicopter carriers, but not all, are classified as amphibious assault ships, tasked with landing and supporting ground forces on enemy territory.

By Size

Fleet carrier
Light aircraft carrier
Escort carrier


The appellation "supercarrier" is not an official designation with any national navy, but a term used predominantly by the media and typically when reporting on new and upcoming aircraft carrier types. It is also used when comparing carriers of various sizes and capabilities, both current and past. It was first used by The New York Times in 1938,in an article about the Royal Navy's HMS Ark Royal, that had a length of 209 meters (686 ft), a displacement of 22,000 tonnes and was designed to carry 72 aircraft.Since then, aircraft carriers have consistently grown in size, both in length and displacement, as well as improved capabilities; in defense, sensors, electronic warfare, propulsion, range, launch and recovery systems, number and types of aircraft carried and number of sorties flown per day.

While the current classes in service, or planned, with the navies of China, India, Russia, and the United Kingdom, with displacements ranging from 65,000 to 85,000 tonnes,lengths ranging from 280 meters (920 ft)to 320 meters (1,050 ft)and varying capabilities, have been described as "supercarriers";the largest "supercarriers" currently in service are with the US Navy,with displacements exceeding 100,000 tonnes,lengths of over 337 meters (1,106 ft),and capabilities that match or exceed that of any other 


The 1903 advent of heavier-than-air fixed-wing airplane with the Wright brothers' first flight at Kitty Hawk, North Carolina, was closely followed on 14 November 1910, by Eugene Burton Ely's first experimental take-off of a Curtiss Pusher airplane from the deck of a United States Navy ship, the cruiser USS Birmingham anchored off Norfolk Navy Base in Virginia. Two months later, on 18 January 1911, Ely landed his Curtiss Pusher airplane on a platform on the armored cruiser USS Pennsylvania anchored in San Francisco Bay. On 9 May 1912, the first airplane take-off from a ship underway was made from the deck of the Royal Navy's pre-dreadnought battleship HMS Hibernia.Seaplane tender support ships came next, with the French Foudre of 1911. Early in World War I, the Imperial Japanese Navy ship Wakamiya conducted the world's first successful ship-launched air raid:on 6 September 1914, a Farman aircraft launched by Wakamiya attacked the Austro-Hungarian cruiser SMS Kaiserin Elisabeth and the Imperial German gunboat Jaguar in Kiaochow Bay off Tsingtao; neither was hit.The first carrier-launched airstrike was the Tondern Raid in July 1918. Seven Sopwith Camels launched from the converted battlecruiser HMS Furious damaged the German airbase at Tondern, Germany (modern day Tønder, Denmark) and destroyed two zeppelin airships.

The development of flattop vessels produced the first large fleet ships. In 1918, HMS Argus became the world's first carrier capable of launching and recovering naval aircraft.As a result of the Washington Naval Treaty of 1922, which limited the construction of new heavy surface combat ships, most early aircraft carriers were conversions of ships that were laid down (or had served) as different ship types: cargo ships, cruisers, battlecruisers, or battleships. These conversions gave rise to the US Lexington-class aircraft carriers (1927), Japanese Akagi, and British Courageous class. Specialist carrier evolution was well underway, with several navies ordering and building warships that were purposefully designed to function as aircraft carriers by the mid-1920s. This resulted in the commissioning of ships such as the Japanese Hōshō (1922),followed by HMS Hermes (1924, although laid down before Hōshō in 1918) and Béarn (1927). During World War II, these ships would become known as fleet carriers.

World War II

The aircraft carrier dramatically changed naval warfare in World War II, because air power was becoming a significant factor in warfare. The advent of aircraft as focal weapons was driven by the superior range, flexibility, and effectiveness of carrier-launched aircraft. They had greater range and precision than naval guns, making them highly effective. The versatility of the carrier was demonstrated in November 1940, when HMS Illustrious launched a long-range strike on the Italian fleet at their base in Taranto, signalling the beginning of the effective and highly mobile aircraft strikes. This operation in the shallow water harbor incapacitated three of the anchored six battleships at a cost of two torpedo bombers.

World War II in the Pacific Ocean involved clashes between aircraft carrier fleets. The Japanese surprise attack on the American Pacific fleet at Pearl Harbor naval and air bases on Sunday, 7 December 1941, was a clear illustration of the power projection capability afforded by a large force of modern carriers. Concentrating six carriers in a single unit turned naval history about, as no other nation had fielded anything comparable. Further versatility was demonstrated during the "Doolittle Raid", on 18 April 1942, when US Navy carrier USS Hornet sailed to within 650 nautical miles (1,200 km) of Japan and launched 16 B-25 bombers from her deck in a retaliatory strike on the mainland, including the capital, Tokyo. However, the vulnerability of carriers compared to traditional battleships when forced into a gun-range encounter was quickly illustrated by the sinking of HMS Glorious by German battleships during the Norwegian campaign in 1940.

This new-found importance of naval aviation forced nations to create a number of carriers, in efforts to provide air superiority cover for every major fleet in order to ward off enemy aircraft. This extensive usage led to the development and construction of 'light' carriers. Escort aircraft carriers, such as USS Bogue, were sometimes purpose-built but most were converted from merchant ships as a stop-gap measure to provide anti-submarine air support for convoys and amphibious invasions. Following this concept, light aircraft carriers built by the U.S., such as USS Independence, represented a larger, more "militarized" version of the escort carrier. Although with similar complement to escort carriers, they had the advantage of speed from their converted cruiser hulls. The UK 1942 Design Light Fleet Carrier was designed for building quickly by civilian shipyards and with an expected service life of about 3 years.They served the Royal Navy during the war, and the hull design was chosen for nearly all aircraft carrier equipped navies after the war, until the 1980s. Emergencies also spurred the creation or conversion of highly unconventional aircraft carriers. CAM ships were cargo-carrying merchant ships that could launch (but not retrieve) a single fighter aircraft from a catapult to defend the convoy from long range land-based German aircraft.

Postwar Era

Before World War II, international naval treaties of 1922, 1930, and 1936 limited the size of capital ships including carriers. Since World War II, aircraft carrier designs have increased in size to accommodate a steady increase in aircraft size. The large, modern Nimitz class of U.S.N. carriers has a displacement nearly four times that of the World War II–era USS Enterprise, yet its complement of aircraft is roughly the same—a consequence of the steadily increasing size and weight of individual military aircraft over the years. Today's aircraft carriers are so expensive that some nations which operate them risk significant political, economic, social and military impact if a carrier is lost, or is even sent to a potential crisis zone or used in conflict.

Some changes were made after 1945 in carriers:

The angled flight deck was invented by Royal Navy Captain (later Rear Admiral) Dennis Cambell, as naval aviation jets higher speeds required carriers be modified to "fit" their needs.Additionally, the angled flight deck allows for simultaneous launch and recovery.
Aircraft carrier designs have increased in size to accommodate continuous increase in aircraft size. The 1950s saw U.S. Navy's commission of "supercarriers", designed to operate naval jets, which offered better performance at the expense of bigger size and demanded more ordnance to be carried on-board (fuel, spare parts, electronics, etc.).
Increase in size and requirements of being capable of more than 30 knots and to be at sea for long periods meant nuclear reactors are now used by aboard aircraft carriers to generate the steam used to produce power for propulsion, electric power, catapulting airplanes in aircraft carriers, and a few more minor uses.
Modern navies that operate such aircraft carriers treat them as the capital ship of the fleet, a role previously held by the sailing galleons, frigates and ships-of-the-line and later steam or diesel powered battleship. This change took place during World War II in response to air power becoming a significant factor in warfare, driven by the superior range, flexibility and effectiveness of carrier-launched aircraft. Following the war, carrier operations continued to increase in size and importance, and along with, carrier designs also increased in size and ability. Some of these larger carriers, dubbed by the media as "supercarriers", displacing 75,000 tonnes or greater, have become the pinnacle of carrier development. Some are powered by nuclear reactors and form the core of a fleet designed to operate far from home. Amphibious assault ships, such as the Wasp and Mistral classes, serve the purpose of carrying and landing Marines, and operate a large contingent of helicopters for that purpose. Also known as "commando carriers" or "helicopter carriers", many have the capability to operate VSTOL aircraft.

Lacking the firepower of other warships, carriers by themselves are considered vulnerable to attack by other ships, aircraft, submarines, or missiles. Therefore, an aircraft carrier is generally accompanied by a number of other ships to provide protection for the relatively unwieldy carrier, to carry supplies and perform other support services, and to provide additional offensive capabilities. The resulting group of ships is often termed a battle group, carrier group, carrier battle group or carrier strike group.

There is a view among some military pundits that modern anti-ship weapons systems, such as torpedoes and missiles, or even ballistic missiles with nuclear warheads have made aircraft carriers and carrier groups obsolete as too vulnerable for modern combat.On the other hand, the threatening role of aircraft carriers has a place in modern asymmetric warfare, like the gunboat diplomacy of the past.Furthermore, aircraft carriers facilitate quick and precise projections of overwhelming military power into such local and regional conflicts.


Carriers are large and long ships, although there is a high degree of variation depending on their intended role and aircraft complement. The size of the carrier has varied over history and among navies, to cater to the various roles that global climates have demanded from naval aviation.

Regardless of size, the ship itself must house their complement of aircraft, with space for launching, storing, and maintaining them. Space is also required for the large crew, supplies (food, munitions, fuel, engineering parts), and propulsion. US aircraft carriers are notable for having nuclear reactors powering their systems and propulsion. This makes the carrier reasonably tall.

The top of the carrier is the flight deck, where aircraft are launched and recovered. On the starboard side of this is the island, where the funnel, air-traffic control and the bridge are located.

The constraints of constructing a flight deck affect the role of a given carrier strongly, as they influence the weight, type, and configuration of the aircraft that may be launched. For example, assisted launch mechanisms are used primarily for heavy aircraft, especially those loaded with air-to-ground weapons. CATOBAR is most commonly used on USN fleet carriers as it allows the deployment of heavy jets with full load-outs, especially on ground-attack missions. STOVL is used by other navies because it is cheaper to operate and still provides good deployment capability for fighter aircraft.

The first carrier landing and take-off of a jet aircraft: Eric "Winkle" Brown landing on HMS Ocean in 1945
Due to the busy nature of the flight deck, only 20 or so aircraft may be on it at any one time. A hangar storage several decks below the flight deck is where most aircraft are kept, and aircraft are taken from the lower storage decks to the flight deck through the use of an elevator. The hangar is usually quite large and can take up several decks of vertical space.

Munitions are commonly stored on the lower decks because they are highly explosive. Usually this is below the water line so that the area can be flooded in case of emergency.

Flight Deck

As "runways at sea", aircraft carriers have a flat-top flight deck, which launches and recovers aircraft. Aircraft launch forward, into the wind, and are recovered from astern. The flight deck is where the most notable differences between a carrier and a land runway are found. Creating such a surface at sea poses constraints on the carrier. For example, the fact that it is a ship means that a full-length runway would be costly to construct and maintain. This affects take-off procedure, as a shorter runway length of the deck requires that aircraft accelerate more quickly to gain lift. This either requires a thrust boost, a vertical component to its velocity, or a reduced take-off load (to lower mass). The differing types of deck configuration, as above, influence the structure of the flight deck. The form of launch assistance a carrier provides is strongly related to the types of aircraft embarked and the design of the carrier itself.

There are two main philosophies in order to keep the deck short: add thrust to the aircraft, such as using a Catapult Assisted Take-Off (CATO-); and changing the direction of the airplanes' thrust, as in Vertical and/or Short Take-Off (V/STO-). Each method has advantages and disadvantages of its own:

Catapult assisted take-off but arrested recovery (CATOBAR): A steam- or electric-powered catapult is connected to the aircraft, and is used to accelerate conventional aircraft to a safe flying speed. By the end of the catapult stroke, the aircraft is airborne and further propulsion is provided by its own engines. This is the most expensive method as it requires complex machinery to be installed under the flight deck, but allows for even heavily loaded aircraft to take off.
Short take-off but arrested recovery (STOBAR) depends on increasing the net lift on the aircraft. Aircraft do not require catapult assistance for take off; instead on nearly all ships of this type an upwards vector is provided by a ski-jump at the forward end of the flight deck, often combined with thrust vectoring by the aircraft. Alternatively, by reducing the fuel and weapon load, an aircraft is able to reach faster speeds and generate more upwards lift and launch without a ski-jump or catapult.
Short take-off vertical-landing (STOVL): On aircraft carriers, non-catapult-assisted, fixed-wing short takeoffs are accomplished with the use of thrust vectoring, which may also be used in conjunction with a runway "ski-jump". Use of STOVL tends to allow aircraft to carry a larger payload as compared to during VTOL use, while still only requiring a short runway. The most famous examples are the Hawker Siddeley Harrier and the Sea Harrier. Although technically VTOL aircraft, they are operationally STOVL aircraft due to the extra weight carried at take-off for fuel and armaments. The same is true of the F-35B Lightning II, which demonstrated VTOL capability in test flights but is operationally STOVL.
Vertical take-off and landing (VTOL): Aircraft are specifically designed for the purpose of using very high degrees of thrust vectoring (e.g. if the thrust to weight-force ratio is greater than 1, it can take off vertically), but are usually slower than conventionally propelled aircraft.
On the recovery side of the flight deck, the adaptation to the aircraft load-out is mirrored. Non-VTOL or conventional aircraft cannot decelerate on their own, and almost all carriers using them must have arrested-recovery systems (-BAR, e.g. CATOBAR or STOBAR) to recover their aircraft. Aircraft that are landing extend a tailhook that catches on arrestor wires stretched across the deck to bring themselves to a stop in a short distance. Post-WWII Royal Navy research on safer CATOBAR recovery eventually led to universal adoption of a landing area angled off axis to allow aircraft who missed the arresting wires to "bolt" and safely return to flight for another landing attempt rather than crashing into aircraft on the forward deck.

If the aircraft are VTOL-capable or helicopters, they do not need to decelerate and hence there is no such need. The arrested-recovery system has used an angled deck since the 1950s because, in case the aircraft does not catch the arresting wire, the short deck allows easier take off by reducing the number of objects between the aircraft and the end of the runway. It also has the advantage of separating the recovery operation area from the launch area. Helicopters and aircraft capable of vertical or short take-off and landing (V/STOL) usually recover by coming abreast of the carrier on the port side and then using their hover capability to move over the flight deck and land vertically without the need for arresting gear.

Staff And Deck Operations

Carriers steam at speed, up to 35 knots (65 km/h; 40 mph) into the wind during flight deck operations to increase wind speed over the deck to a safe minimum. This increase in effective wind speed provides a higher launch airspeed for aircraft at the end of the catapult stroke or ski-jump, as well as making recovery safer by reducing the difference between the relative speeds of the aircraft and ship.

Since the early 1950s on conventional carriers it has been the practice to recover aircraft at an angle to port of the axial line of the ship. The primary function of this angled deck is to allow aircraft that miss the arresting wires, referred to as a bolter, to become airborne again without the risk of hitting aircraft parked forward. The angled deck allows the installation of one or two "waist" catapults in addition to the two bow cats. An angled deck also improves launch and recovery cycle flexibility with the option of simultaneous launching and recovery of aircraft.

Conventional ("tailhook") aircraft rely upon a landing signal officer (LSO, radio call sign paddles) to monitor the aircraft's approach, visually gauge glideslope, attitude, and airspeed, and transmit that data to the pilot. Before the angled deck emerged in the 1950s, LSOs used colored paddles to signal corrections to the pilot (hence the nickname). From the late 1950s onward, visual landing aids such as the optical landing system have provided information on proper glide slope, but LSOs still transmit voice calls to approaching pilots by radio.

Key personnel involved in the flight deck include the shooters, the handler, and the air boss. Shooters are naval aviators or naval flight officers and are responsible for launching aircraft. The handler works just inside the island from the flight deck and is responsible for the movement of aircraft before launching and after recovery. The "air boss" (usually a commander) occupies the top bridge (Primary Flight Control, also called primary or the tower) and has the overall responsibility for controlling launch, recovery and "those aircraft in the air near the ship, and the movement of planes on the flight deck, which itself resembles a well-choreographed ballet."The captain of the ship spends most of his time one level below primary on the Navigation Bridge. Below this is the Flag Bridge, designated for the embarked admiral and his staff.

To facilitate working on the flight deck of a U.S. aircraft carrier, the sailors wear colored shirts that designate their responsibilities. There are at least seven different colors worn by flight deck personnel for modern United States Navy carrier air operations. Carrier operations of other nations use similar color schemes.

Deck Structures

The superstructure of a carrier (such as the bridge, flight control tower) are concentrated in a relatively small area called an island, a feature pioneered on HMS Hermes in 1923. While the island is usually built on the starboard side of the flight deck, the Japanese aircraft carriers Akagi and Hiryū had their islands built on the port side. Very few carriers have been designed or built without an island. The flush deck configuration proved to have significant drawbacks, primary of which was management of the exhaust from the power plant. Fumes coming across the deck were a major issue in USS Langley. In addition, lack of an island meant difficulties managing the flight deck, performing air traffic control, a lack of radar housing placements and problems with navigating and controlling the ship itself.

Another deck structure that can be seen is a ski-jump ramp at the forward end of the flight deck. This was first developed to help launch STOVL aircraft take off at far higher weights than is possible with a vertical or rolling takeoff on flat decks. Originally developed by the Royal Navy, it since has been adopted by many navies for smaller carriers. A ski-jump ramp works by converting some of the forward rolling movement of the aircraft into vertical velocity and is sometimes combined with the aiming of jet thrust partly downwards. This allows heavily loaded and fueled aircraft a few more precious seconds to attain sufficient air velocity and lift to sustain normal flight. Without a ski-jump, launching fully-loaded and fueled aircraft such as the Harrier would not be possible on a smaller flat deck ship before either stalling out or crashing directly into the sea.

Although STOVL aircraft are capable of taking off vertically from a spot on the deck, using the ramp and a running start is far more fuel efficient and permits a heavier launch weight. As catapults are unnecessary, carriers with this arrangement reduce weight, complexity, and space needed for complex steam or electromagnetic launching equipment. Vertical landing aircraft also remove the need for arresting cables and related hardware. Russian, Chinese, and future Indian carriers include a ski-jump ramp for launching lightly loaded conventional fighter aircraft but recover using traditional carrier arresting cables and a tailhook on their aircraft.

The disadvantage of the ski-jump is the penalty it exacts on aircraft size, payload, and fuel load (and thus range); heavily laden aircraft can not launch using a ski-jump because their high loaded weight requires either a longer takeoff roll than is possible on a carrier deck, or assistance from a catapult or JATO rocket. For example, the Russian Su-33 is only able to launch from the carrier Admiral Kuznetsov with a minimal armament and fuel load. Another disadvantage is on mixed flight deck operations where helicopters are also present, such as on a US landing helicopter dock or landing helicopter assault amphibious assault ship. A ski jump is not included as this would eliminate one or more helicopter landing areas; this flat deck limits the loading of Harriers but is somewhat mitigated by the longer rolling start provided by a long flight deck compared to many STOVL carriers.

National Fleets

South Korea
United Kingdom
United States

Current Museum Carriers

A few aircraft carriers have been preserved as museum ships. They are:

USS Yorktown (CV-10) in Mount Pleasant, South Carolina
USS Intrepid (CV-11) in New York City
USS Hornet (CV-12) in Alameda, California
USS Lexington (CV-16) in Corpus Christi, Texas
USS Midway (CV-41) in San Diego, California
Soviet aircraft carrier Kiev in Tianjin, China
Soviet aircraft carrier Minsk in Nantong, China

Future Museum Carriers

USS John F. Kennedy (CV-67) is the subject of a campaign for preservation at Newport, Rhode Island.
USS Tarawa (LHA-1) has a preservation campaign to bring her to the West Coast of the United States as the world's first amphibious assault ship museum.

Post a Comment

Note: Only a member of this blog may post a comment.

favourite category


Whatsapp Button works on Mobile Device only